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ABSTRACT 

Large  enclosures  offer  a  myriad  of  possibilities  for  virtual  environments  and  can 

dramatically  in^rove  presence  for  a  number  of  applications.  Scaae  graphs  are  accepted  as  the 

logical  and  optimized  way  to  generate  and  render  applications,  however  most  scene  graphs  are 

proprietary  or  platform  specific.  Open  source  scene  graphs  are  emerging  that  are  easily  used  and 

cross-platform. 

This  thesis  describes  the  physical  construction  of  a  large  sized  Multiple  Angle  Automatic 

Virtual  Environment  (MAAVE)  and  the  programming  of  visual  simulations  using  Vega,  a 

powerful  commercially  available  software  package,  and  JavaSD,  an  open  source  scene  graph.  The 

two  simulations  are  networked  walkthrough  virtual  environments  using  the  same  geometry. 

After  the  MAAVE  was  built,  the  two  applications  were  tested  on  multiple  platforms  with 

frame  rate  being  the  main  measure  of  performance.  Initial  expectations  were  that  Vega  would  be 

faster,  but  the  ease  and  speed  of  development  of  each  application  was  unknown.'  Results  showed 

that  the  Vega  application  was  10  to  30  times  faster  on  sgj  hardware  and  4  to  20  tinoes  faster  on  a 

standard  PC.  The  Java3D  application  required  one  third  of  the  development  time  and  was  easier 

to  program.  Overall,  we  conclude  that  Vega  is  the  bettCT  development  platform  for  multi-channel 

walkthrough  applications. 
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I.  INTRODUCTION 

A.  MOTIVATION 

Large-sized  Virtual  Environment  Enclosures  (VEE)  are  increasingly  used  for  solving 

networked  visualization  problems  both  in  industry  and  scientific  research.  Commercially 

available  systems  offer  excellent  visual  performance  but  are  prohibitively  priced  for  small 

budgeted  research  facilities.  Most  VEEs  use  proprietary  software  which  incurs  additional  costs 

for  procurement  and  lifetime  support.  Compatibility  becomes  an  issue  when  networking  several 

remotely  located  VEEs  together  to  allow  collaborative  problem  solving.  Advances  in  electronic 

display  capability,  as  well  as  exponential  increases  in  computing  speed,  have  made  construction 

of  a  low  cost  alternative  VEE  feasible.  In  order  to  accomplish  meaningful  research,  this 

alternative  VEE  must  still  retain  all  the  crucial  visualization  elements  of  commercial  systems. 

A  VEE  is  any  physically  large  structure  that  one  or  more  users  occupy  while  participating 

in  a  virtual  environment.  Users  are  often  allowed  to  move  around  inside  a  VEE  and  have  the 

scene  update  to  the  new  orientation.  Some  type  of  three-dimensional  glasses  is  required  for  users 

to  view  objects  that  are  presented  in  three  dimensions. 

Software  choices  for  operating  this  alternative  VEE  must  balance  providing  a  compelling 

virtual  experience  that  can  be  shared  by  multiple  users  with  cross  platform  compatibility  and  low 

cost.  Additionally,  the  potential  for  future  expansion  must  be  considered  and  parallel  software 

solutions  can  be  viable  depending  on  the  desired  results  for  a  given  environment.  Beyond 

visualization,  a  large  scale  VEE  can  take  advantage  of  other  human  sensory  perception  inputs. 

Spatial  sound  has  been  proven  to  increase  the  quality  of  immersion  in  virtual  environments  and 
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can  be  used  to  supplement  visual  displays  or  provide  cueing  for  non-visual  events,  ftoviding  the 

user  a  non-intrusive  means  for  controlling  their  immersive  experience  in,  and  locomotion 

through,  a  virtual  environment  can  enhance  the  believability  of  the  simulation.  One  last 

consideration  for  creating  a  large  scale  VEE  is  that  more  than  just  a  few  users  would  be  able  to 

view  the  virtual  environment  simultaneously.  This  requires  either  a  massive  space  to  hold  the 

VEE,  or  better  yet  a  VEE  that  has  the  ability  to  set  the  screens  at  multiple  angles. 

B.  BACKGROUND 

Large  scale  VEEs  have  been  around  for  less  than  10  years,  although  the  concept  is  much 

older.  The  CAVE™  (CAVE  Automatic  Virtual  Environment)  was  the  first  major  VEE  to  be 

publicly  introduced  and  all  follow-on  systems  benefited  greatly  from  the  groundbreaking 

advances  that  it  incorporated  [Cruz-Neira93].  First  appearing  in  1992,  the  original  CAVE  had 

three  ten  foot  by  ten  foot  walls  with  90  degree  comers  between  them.  The  virtual  environment 

images  were  projected  onto  the  back  of  the  translucent  screens  with  a  fourth  projection  onto  the 

floor  between  these  three  walls.  Since  the  introduction  of  the  CAVE,  many  large  scale  VEEs,  like 

the  C2,  CABIN  and  C6,  have  been  created.  Along  with  the  latest  versions  of  the  CAVE,  these 

systems  have  many  improvements  over  the  original  design  to  include  more  walls,  better 

spatialized  sound  and  less  occlusion  of  the  viewing  area.  All  of  these  systems  are  expensive 

($500,000+)  and  beyond  the  financial  capabilities  of  most  learning  institutions.  Early  in  1999, 

the  NAVE  (NAVE  Automatic  Virtual  Environment)  was  created  for  $60,000,  giving  a  good 

example  of  a  low  cost  large  scale  VEE. 

The  cmcial  element  for  any  VEE  is  the  displaying  of  the  virtual  environment  through 

computer  software.  Scene  graphs  have  emerged  as  the  preferred  data  stmcture  for  manipulating 

and  displaying  complicated  graphical  models  on  computer  systems.  Highly  specialized  scene 
2 



graph  software  like  Vega™  is  costly  and  can  only  be  operated  on  certain  hardware  platforms,  but 

offer  current  state  of  the  art  in  performance  and  flexibility.  A  cross  platform  scene  graph  that  is 

growing  in  use  is  JavaSD™.  In  addition  to  being  built  on  Java  and  able  to  run  on  many  computer 

operating  systems,  JavaSD  has  the  benefit  of  being  open  source  which  means  it  can  be 

downloaded  from  the  hitemet  at  no  cost.  JavaSD  suffers  a  speed  performance  penalty  since  it  has 

to  run  on  top  of  the  Java  Virtual  Machine  (JVM)  in  order  to  interface  with  the  hardware. 

The  JVM  is  a  software  interface  to  a  computer’s  hardware  and  is  platform  specific.  The 

JVM  can  interpret  any  .standard  Java  code.  This  means  Java  code  can  be  written  and  compiled 

once  and  run  on  any  machine  having  a  JVM. 

Networked  virtual  environments  allow  research  collaboration,  problem  visualization,  and 

multi-entity  visual  simulations.  A  decision  had  to  be  made  on  what  type  of  networking  solution 

would  produce  the  most  accurate  visual  graphics  results,  yet  have  minimal  impact  on  the  speed 

with  which  the  graphics  are  updated  or  refreshed.  Refresh  rate  has  been  shown  as  the  single  most 

critical  factor  in  preventing  simulator  sickness  and  other  aberrations  that  were  manifest  in  early 

immersive  systems.  Distributed  Interactive  Simulation  (DIS)  allows  each  site  to  have  its  own 

terrain  model  and  representations  for  each  entity  type  [IEEE98].  Although  this  may  cause  some 

degree  of  uniqueness  in  the  graphical  representations  by  each  network  participant,  it  allows  each 

system  to  use  software  and  geometry  that  is  optimized  for  its  own  platform,  thereby  having  the 

least  impact  on  refresh  rate.  It  also  allows  each  computer  to  maintain  the  entities’  states, 

eliminating  the  need  for  a  central  server.  DIS  is  highly  enumerated  and  has  become  a  well- 

accepted  standard  that  enables  a  user  to  participate  in  a  large  number  of  networked  virtual 

environments.  Other  options  considered  were  the  new  High  Level  Architecture  (HLA)  and  the 

network  toolkit  Bamboo.  HLA  was  discarded  because  it  is  only  available  in  C++,  the  source 
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code  is  unavailable,  it  rans  from  a  central  server,  and  it  is  very  hard  to  implement.  Bamboo  was 

rejected  because  it  was  not  developed  enough  to  support  this  thesis. 

DK  is  an  Institute  of  Electrical  and  Electronics  Engineers  (IEEE)  standard  for  creating  a 

data  structure  for  sending  physical  parameters  over  a  computer  network.  It  is  composed  of  a 

series  of  data  fields  in  a  particular  order  to  ensure  wide-scale  interoperability. 

C.  DEVELOPMENT  OF  THESIS 

Physical  location  constraints  were  the  single  most  restrictive  element  in  the  creation  of 

our  large  scale  VEE.  Room  location  also  presented  unique  computer  display  problems  because 

the  room  where  the  VEE  is  located  is  physically  distant  from  the  best  graphics  computer  in  the 

building.  The  thesis  work  progressed  in  the  following  parallel  areas: 

-  Physical  room  construction  and  modification. 

-  Computer  hardware  identification  and  setup. 

Computer  software  selection,  modification  and  implementation. 

Evaluation  of  software  in  VEE 

The  choice  for  the  first  graphics  model  to  run  in  the  VEE  was  a  detailed  layout  of  Herrmann  Hall, 

which  was  formerly  known  as  the  Hotel  Del  Monte  and  is  currently  the  heart  of  the  Naval  Post 

Graduate  School  campus.  This  model  was  created  in  MultiGen  and  saved  in  the  Flight  graphics 

format. 

Since  Vega  and  JavaSD  (through  third  party  software)  can  directly  read  Flight  graphics 

files,  the  Herrmann  Hall  model  was  a  natural  choice  and  saved  the  time  of  having  to  create  or 

modify  a  compelling  visual  model  for  demonstrations  and  development.  Unfortunately  both 
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Vega  and  JavaSD  needed  extensive  modifications  to  create  the  illusion  of  walking  ttirough 

Hormaim  Hall. 

Physical  construction  provided  seva-al  unique  challenges  to  include  using  less  expensive 

mat^als  and  not  violating  building  codes.  This  meant  using  wood  firames  and  allowing  fcs:  thdr 

waipage,  finding  readily  available  acoustic  mat^al  and  attaching  it  to  all  hard  reflective  surfaces 

and  sevCTal  ote  alternative  mataials  firom  what  a  commarcially  constructed  VEE  uses. 

Purchasing  a  top  end  multiple  channel  graphics  computer  would  easily  keq)  this  project 

out  of  the  realm  of  financial  plausibility.  This  meant  having  to  choose  alternate  m^ods  of 

delivering  visual  output  to  the  projectOTs  and  the  proper  projector  for  the  images  we  needed  to 

display.  Two  m^ods  wore  finally  decided  upon,  one  using  a  personal  conputar  with  three 

graphics  cards  and  the  other  is  using  an  older  multiple  graphics  channel  Silicon  Graphics 

computer. 

D.  SUMMARY  OF  CHAPTERS 

This  thesis  is  organized  into  the  following  chapters; 

Chapter  II:  Detailed  Background.  Discusses  the  evolution  of  large  scale  Virtual 

Environmeit  Enclosures,  the  evolution  of  software  scene  graphs  that  are  used  to 

provide  graphics  for  the  VEEs  and  a  brief  history  of  networked  visual  simulations. 

-  Chapter  ID:  Physical  construction  of  a  Large  Scale  Virtual  Environment  Enclosure. 

Discusses  in  detail  the  construction  of  the  Multiple  Angle  Automatic  Virtual 

Environment  (MAAVE)  and  how  this  VEE  is  connected  in  a  neworked  virtual 

environment. 
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Chapter  IV:  Vega  Implementation.  Describes  the  use  of  Vega  and  modifications  that 

were  needed  to  have  the  software  perform  in  the  desired  manner  inside  the  MAAVE. 

Chapter  V:  JavaSD  Implementation.  Describes  the  implementation  of  JavaSD 

software  for  use  in  the  MAAVE. 

Chapter  VI:  Results  and  Conclusions.  Discusses  differences  in  programming 

complexity,  cost,  and  performance  between  the  Vega  and  JavaSD  applications  for 

both  PC  and  Silicon  Graphics  workstations  in  the  MAAVE. 

Chapter  VII:  Future  Work.  Discusses  ideas  as  to  future  work  that  could  be  completed 

in  each  area. 
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n.  PREVIOUS  WORK 

Many  evolving  technologies  have  matured  to  the  point  where  it  possible  for  large-sized 

virtual  environment  enclosures  to  be  created.  These  fundamental  elements  include:  computer 

hardware  that  is  capable  of  high  speed  computations  for  both  orientation  and  drawing  to  a  screen, 

projectors  that  are  capable  of  delivering  high  resolution  digital  graphics,  software  that  allows 

efficient  representation  of  the  virtual  environment,  and  computer  networking  technology  that 

allows  for  efficient  communication  between  simulations  on  dissimilar  computers  at  remote 

locations.  This  chapter  looks  at  some  of  the  previous  work  in  VEEs,  scene  graphs,  and 

networked  visual  simulations. 

A.  PREVIOUS  VIRTUAL  ENVIRONMENT  ENCLOSURES 

We  begin  with  a  look  at  other  VEE  systems  including  the  approaches  taken,  the  software, 

and  hardware  that  was  used  and  benefits  and  limitations  of  these  systems. 

1.  The  CAVE 

The  CAVE  is  the  recursive  acronym  given  to  the  first  Virtual  Environment  Enclosure 

(VEE)  that  was  created  in  1991.  It  stands  for  Cave  Automatic  Virtual  Environment  and  is  based 

on  the  simile  of  the  cave  found  in  Plato's  Republic.  It  was  in  this  cave  that  a  person  would  stand 

and  peer  into  the  dark,  only  seeing  the  flickering  shadows  from  the  fire  light  and  let  the  mind  race 

with  imagination  from  the  images  formed  on  the  walls. 
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Figure  2.1.  Illustration  of  CAVE  created  at  Univ.  of  El.  at  Chicago.  [CAVEOO] 

Created  in  the  Electronic  Visualization  Laboratory  at  the  University  of  Elinois  at  Chicago 

by  Dr.  Carolina  Cruz-Neira  as  part  of  her  research  [Cruz-Neira93],  CAVE  has  become  the  name 

given  to  all  similar  VEE  structures.  Motivation  for  creation  of  the  first  CAVE  was  rooted  in 

furthering  scientific  visualization  and  was  an  entrant  in  the  SIGGRAPH  '92  Showcase  effort.  The 

goal  of  the  Showcase  was  to  create  a  life-size  VEE  that  minimized  user  attachments  and 

encumbrances  while  delivering  high-resolution  three-dimensional  computer  graphics  that  could 

create  the  illusion  of  reality  and  aUow  for  a  one  to  many  presentation  of  material.  The  Showcase 

wanted  to  get  away  from  the  Umitations  of  Head-Mounted  Displays  (HMD)  to  provide  safer  and 

less  fatiguing  sessions  for  multiple  users. 

Due  to  the  physical  limitations  of  the  space  where  initial  research  was  conducted,  the  first 

CAVE  was  only  seven  feet  wide,  deep  and  high.  The  necessity  of  folding  the  projection  images 
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was  twarfft  readily  apparent  given  the  size  of  the  room.  This  is  accomplished  by  having  the 

projector  shine  onto  one  or  more  mirrored  surfaces  prior  to  being  cast  fall  size  on  the  projection 

wall/floor.  The  size  of  the  mirrors  are  smaller  the  farther  they  are  from  the  projection  surface. 

An  additional  benefit  from  having  the  image  bounced  off  of  several  mirrors  is  that  the  projectors 

no  longer  had  to  be  pointed  directly  at  the  screen  and  could  now  be  placed  very  close  to  the 

CAVE  walls. 

The  reason  that  a  cube  shape  was  selected  was  the  ease  of  calculations  of  the  images  on 

the  projection  planes.  Human  visual  acuity  is  based  on  the  linear  distance  from  the  object  given 

that  all  of  the  light,  contrast  and  hue  factors  are  held  constant  for  a  specific  object.  This  dictates 

that  a  sphere  would  be  the  ultimate  projection  surface  for  humans  to  participate  in  a  virtual 

environment.  Unfortunately  computer  graphics  are  designed  to  calculate  images  in  a  series  of 

planar  views.  To  emulate  a  spherical  representation  using  planar  image  fields  would  require  an 

immense  number  of  these  planes  stacked  together  and  then  having  concentrically  larger  circular 

disks  removed  from  the  center  of  the  plane  starting  at  the  tangent  point  of  the  projected  image 

onto  the  spherical  screen.  This  also  would  require  overlapping  images  from  different  projectors 

to  be  exactly  aligned  so  the  stereo  image  effect  is  not  destroyed.  It  was  for  these  two  main 

reasons,  plus  the  cost  of  having  round  projection  surfaces  made,  that  a  cube  was  used  to 

approximate  a  spherical  projection  surface.  This  choice  also  has  the  advantage  of  being  the 

polyhedron  that  is  the  quickest  for  a  computer  to  generate  an  image  of.  By  having  the  cube  be  of 

large  size,  it  allows  for  multiple  simultaneous  users  who  could  walk  around  objects  that  were 

located  between  them  and  the  plane  of  the  projection  screen  surfaces. 

The  walls  were  rear  projection  screens  to  prevent  the  users  from  occluding  the  projected 

images  since  interposition  of  objects,  also  referred  to  as  occlusion,  is  one  of  the  most  significant 

measures  of  object  depth  in  the  field  of  view  for  the  human  eye  [Wickens,  et.  al.98,  p.  96].  The 

walls  were  actually  one  continuous  piece  of  material,  with  the  comers  formed  by  running  an 
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eighth  inch  steel  cable  under  tension  from  the  floor  to  above  the  walls.  Although  these  wires 

created  only  a  small  break  in  the  continuity  of  the  projection  surface  (estimated  to  be  only  one 

image  pixel  wide),  they  were  large  enough  to  destroy  the  stereo  effect  generated  by  the  projectors 

if  the  object  that  is  being  viewed  crosses  either  of  the  wires.  Since  the  floor  was  not  transparent 

in  the  first  CAVE,  an  image  was  projected  onto  it.  This  floor  image  significantly  enhanced  a 

users  experience  in  the  CAVE.  As  all  of  the  projectors  were  located  behind  the  wedl  screens,  the 

mirror  for  the  floor  projection  to  bounce  off  of  was  placed  behind  the  head  of  the  user.  This 

caused  the  users  to  cast  a  shadow  onto  the  floor  in  front  of  themselves.  Follow  on  models  of  the 

CAVE  therefore  had  the  floor  projector  located  above  and  behind  the  user  with  the  mirror  in  front 

of  them  so  any  shadows  would  be  cast  behind  the  user  out  of  sight.  Most  of  the  supporting 

structure  was  created  out  of  wood  to  minimize  the  interference  for  the  magnetic  tracking 

equipment,  giving  better  range  for  tracking  with  fewer  anomalies  to  be  corrected  for  by  the 

software. 

Stereo  images  were  created  for  the  user  by  using  shutter  glasses  and  having  alternating 

images  flashed  upon  the  projection  surfaces.  Shutter  glasses  work  by  having  an  independent 

electronic  shutter  for  each  eye  that  can  prevent  light  from  going  through  the  lens.  The  timing  of 

the  shutter  action  is  controlled  by  sending  an  infrared  signal  to  the  glasses  from  the  computer  that 

is  generating  or  synchronizing  the  refreshing  of  the  images  on  the  screens.  When  one  eye  is 

allowed  to  see  light,  the  computer  draws  only  half  of  the  horizontal  lines  of  resolution  from  the 

perspective  of  that  eye  s  physical  location  in  the  CAVE.  The  computer  then  sends  the  signal  to 

the  glasses  to  switch  shutters  and  at  the  same  time  removes  the  first  eyes  image  from  the  screen. 

The  computer  then  translates  the  same  image  that  the  first  eye  observed  to  the  proper  perspective 

location  for  the  second  eye  and  draws  the  same  image.  To  prevent  the  human  eye  from  detecting 

this  shutter  flicker  the  images  need  to  be  shown  at  a  rate  above  the  fusion  frequency  for  humans. 

Fusion  frequency  is  the  point  at  which  a  series  of  images  stops  flickering  and  is  seen  as  a  coherent 
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image.  This  frequency  is  typically  in  the  region  of  40  cycles  per  second  [Vince92,  p.  138],  The 

CAVE  delivered  images  at  a  rate  of  60  cycles  per  second  per  eye.  A  magnetic  tracker  was 

attached  in  the  center  of  the  shutter  glasses  at  five  and  one  half  inches  above  the  eyes,  allowing 

the  computer  to  know  where  the  eyes  were  located,  but  not  what  they  were  looking  at. 

Two  major  reasons  were  cited  for  the  very  low  rate  of  uncomfortable  simulator  sickness 

reported.  The  first  reason  was  the  high  refresh  rate  for  the  projected  images,  and  the  second  was 

that  for  the  first  time  the  projection  surfaces  did  not  move  with  the  users,  like  HMD  or  boom 

mounted  viewers.  Another  possible  contributing  factor  was  that  users  could  see  their  own  bodies 

while  in  this  environment,  including  both  arms  and  feet. 

The  physical  environment  that  the  CAVE  was  placed  in  was  also  critical  to  its  successful 

employment.  The  most  harmful  environmental  effect  was  outside  light  sources  that  would  bleed 

out  the  images  on  the  projection  surfaces.  This  meant  that  all  light  had  to  be  controlled  in  the 

room  where  it  was  first  constructed  and  necessitated  building  an  enclosure  for  setting  up  the 

CAVE  when  demonstrating  away  from  a  controlled  room.  The  acoustical  properties  of  the  space 

where  a  CAVE  is  located  are  also  very  important  if  using  spatialized  sound.  The  sound  system 

for  the  first  CAVE  suffered  from  sound  reflections  off  both  its  enclosures  and  the  projection 

screens  themselves.  The  first  CAVE  made  no  attempt  at  introducing  haptic  feedback,  airflow  and 

temperature  control,  vibration  control,  or  ‘smell-o-vision’  to  quote  a  popular  term  for  introducing 

controlled  scents  into  a  virtual  environment. 

A  major  strength  of  the  first  CAVE  was  the  ability  to  freeze  position  and  request  a  more 

detailed  image  from  a  file  server  located  remotely.  The  user  would  navigate  through  the  virtual 

environment  using  their  control  wand,  and  upon  reaching  an  object  that  needed  to  be  investigated 

in  greater  detail  they  could  freeze  the  motion  and  request  a  more  detailed  drawing  of  the 

object(s).  The  user  would  still  be  able  to  walk  around  the  object,  but  the  environment  would  no 

longer  move.  Doing  this  type  of  operation  was  possible  with  HMD’s,  but  doing  so  was  very 
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disorienting  to  the  user  and  the  user  could  not  move  around  the  object.  The  boom-based  systems 

also  suffer  from  not  being  able  to  view  the  object  from  other  than  the  angle  at  which  the  motion 

was  frozen. 

The  University  of  Illinois  at  Chicago  teamed  up  with  Pyramid  Systems  and  Fakespace 

Incorporated  to  commercially  produce  the  CAVE,  and  it  is  being  widely  used  throughout  the 

world  [CAVEOO].  CAVEs  are  used  for  problem  solving,  rapid  prototyping,  collaborative 

designing  from  remote  locations,  connectivity  with  supercomputers  and  also  with  other  virtual 

reality  devices.  Examples  of  these  are  automobile  design  where  engineers  can  sit  in  the  newly 

designed  drivers  seat  and  see  if  they  can  easily  and  comfortably  reach  all  of  the  switches,  knobs 

and  peddles.  Major  users  of  the  CAVE  system  include:  General  Motors  Corporation,  Caterpillar 

Corporation,  the  National  Aeronautics  and  Space  Administrations,  Argonne  National 

Laboratories  and  the  Defense  Advanced  Research  Projects  Agency.  These  commercialized 

versions  use  a  specialized  CAVE  library,  which  takes  in  the  inputs  from  the  tracking  devices  and 

computes  the  correct  transformations  for  the  images  to  be  displayed.  The  space  required  to  set  up 

a  CAVE  is  35  feet  in  width,  25  feet  in  depth  and  13  feet  in  height  for  the  standard  ten  foot  by  ten 

foot  walls.  [FakespaceOO] 

2.  The  C2 

After  leaving  the  University  of  Dlinois  at  Chicago,  Dr.  Carolina  Cruz-Neira  went  to  Iowa 

State  University  to  continue  and  refine  her  initial  work.  The  result  was  the  C2  that  went  into  use 

in  1996  [C200].  The  C2  has  many  technical  improvements  over  the  original  CAVE  system. 

The  most  significant  improvement  is  the  way  the  comers  of  the  C2  are  formed.  To 

eliminate  the  occlusion  problem  from  her  earlier  work,  a  new  method  was  needed  to  create  a 

seamless  comer.  Working  with  the  Engineering  department  at  Iowa  State  University  they  came 
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up  with  a  clamp  system  that  has  a  fine  edge  and  pinches  the  screen  material  into  an  exact  90- 

degree  comer.  Also  the  three  screens  are  separate,  vice  continuous,  with  triangular  spacers  that 

the  ends  of  the  screen  material  wrap  around  so  the  clamps  have  a  solid  surface  to  press  against. 

By  doing  this  and  adjusting  the  projectors  exactly  it  is  possible  to  have  a  continuous  image  in  the 

comers  that  retain  the  binocular  stereo  effect  since  there  is  no  occlusion.  This  truly  makes  the 

entire  surface  a  useful  projection  screen  and  virtual  environment  creators  no  longer  have  to  worry 

about  keeping  the  images  to  a  smaller  size  so  that  they  fit  easily  onto  a  single  panel  of  the  display. 

Figure  2.2.  Illustration  of  C2  created  at  Iowa  State  Univ.  [C200] 

The  other  major  innovation  was  in  the  constraction  of  the  frame  that  supports  the  entire 

stracture.  The  system  is  called  UniStmt  and  is  made  from  metal  tubing.  All  of  the  projectors, 

screens,  speakers,  and  both  infrared  and  magnetic  tracking  devices  are  attached  to  this  stracture. 

The  magnetic  tracking  devices  are  suspended  low  enough  that  the  metal  frame  is  not  an 

interference  source.  This  design  also  helps  with  portability  and  construction  of  the  C2. 

Disappointed  with  the  acoustical  performance  of  her  earlier  work,  the  C2  has  a  fully  spatialized 
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four  speaker  stereo  sound  system  with  plans  to  increase  to  an  eight  speaker  system.  Using  folded 

optics  the  C2  requires  a  space  28  feet  wide  by  21  feet  deep  and  15  feet  high  to  be  set  up  in  with 

twelve  foot  by  twelve  foot  walls. 

Current  work  at  Iowa  State  University  is  on  a  six-sided  VEE  called  the  C6.  To  house  a 

structure  of  this  size  requires  at  least  a  three  story  high  room  or  warehouse.  The  floor  has  to  be 

made  of  a  substance  that  will  produce  binocular  stereo  images,  yet  support  the  weight  of  several 

people.  The  biggest  problem  is  how  to  get  people  in  and  out  of  the  enclosure  yet  have  no  seems 

that  would  destroy  the  three  dimensional  images.  The  solution  that  Iowa  State  is  going  to  use  is 

to  have  the  entire  rear  wall  pivot  at  one  edge  and  then  be  clamped  once  it  is  closed.  The  mirrors 

and  projectors  are  not  going  to  move  so  having  the  wall  always  go  back  to  the  same  position  is 

the  only  problem  that  must  be  overcome.  This  is  not  the  first  CAVE  attempted  that  has  users 

standing  on  a  rear  projection  surface. 

3.  The  CABIN 

Created  at  the  University  of  Tokyo,  the  Computer  Aided  Booth  for  Image  Navigation 

(CABIN)  first  went  into  use  late  in  1996.  This  was  a  major  undertaking  made  possible  only 

through  corporate  support  from  aroimd  the  world.  The  CABIN  is  located  in  a  warehouse 

dedicated  solely  for  its  own  usage  and  has  three  walls,  a  ceiling  and  a  floor  that  are  all  rear 

projection  screens.  The  floor  is  made  of  tempered  glass  and  has  no  intermediate  supports  in  the 

center.  All  of  the  seams  are  minute  so  binocular  stereo  images  are  possible  in  any  direction 

except  through  the  open  back.  The  CABIN  has  a  steel  frame  to  support  its  own  weight  as  the 

glass  is  extremely  heavy. 
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Figure  2.3.  Illustration  of  the  CABIN  created  at  the  Univ.  of  Tokyo.  [CABINOO] 

4.  The  NAVE 

Created  by  the  Georgia  Institute  of  Technology  Virtual  Environments  Group,  the  NAVE 

Automatic  Virtual  Environment  was  an  effort  to  create  a  smaller  scale  low  cost  CAVE. 

Depending  upon  the  options,  a  commercially  produced  CAVE  can  cost  millions  of  dollars.  The 

goal  of  the  NAVE  was  to  create  a  large  scale  VEE  for  around  $60,000.00,  showing  that  it  was 

possible  for  smaller  institutions  to  have  access  to  such  useful  devices  without  business  partners  or 

major  financial  hardship. 
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Figure  2.4.  Overhead  blueprint  of  NAVE.  [NAVEOO] 

The  NAVE  is  a  three-screen  display  without  any  images  projected  onto  the  floor  or 

ceiling.  It  is  designed  for  two  users  seated  in  a  rumble  seat  at  the  focal  point  of  the  screens.  The 

screens  are  seven  feet  wide  and  have  a  120-degree  angle  between  them.  This  angle  was  chosen  to 

better  approximate  a  spherical  screen  than  90-degree  comers.  This  choice  of  angles  also  made  a 

single  projection  onto  the  floor  incredibly  difficult  to  achieve.  The  screens  are  rear  projection 

rigid  Plexiglas  that  are  held  at  both  the  top  and  bottom.  The  edges  are  butted  up  against  each 

other  and  were  hand  fitted  to  minimi2e  the  gap  between  the  screens.  The  entire  NAVE  sits  on  a 

raised  platform. 

Conventional  CAVEs  allow  the  users  to  walk  freely  in  the  area  between  the  walls.  In  the 

NAVE  users  are  confined  to  sit  during  the  entire  duration  of  the  virtual  experience.  This  has  both 

benefits  and  detractions.  Benefits  include  not  having  to  track  where  the  users  eyes  are  located 

since  they  are  always  seated  in  the  same  approximate  location.  This  reduces  the  number  of 

calculations  needed  for  determining  the  image  plane  to  be  displayed  on  each  screen.  Also,  with 
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the  center  of  focus  in  the  middle  of  the  two  users,  it  prevents  disorienting  motions  when  the  main 

user  and  secondary  users  move  in  different  directions  inside  of  traditional  CAVEs.  As  for  motion 

control,  with  the  users  sitting  in  chairs  that  feel  similar  to  bucket  seats  found  in  automobiles,  a 

smooth  driving  or  flying  motion  is  very  believable.  When  a  person  is  standing  and  moving 

forward,  a  walking  motion  is  most  natural.  For  a  VEE  to  incorporate  this  type  of  motion  would 

require  the  projected  images  to  be  moved  up  and  dovm  several  inches  for  every  step,  and  increase 

the  magnitude  of  the  oscillations  if  the  gait  changes  to  a  high  speed  motion  such  as  jogging  or 

running  A  three-degree  of  freedom  joystick  is  located  between  the  two  attached  seats  for 

movement  inputs. 

Major  disadvantages  of  having  the  users  seated  include  only  two  users  can  be  truly 

immersed  at  any  one  time  and  close  inspection  of  images  from  different  angles  is  very  difficult. 

With  only  two  users  at  any  one  time  in  a  device  that  occupies  a  24  by  20  foot  room,  the  NAVE  is 

not  much  better  in  a  cost  per  user  sense.  One  of  the  major  visualization  advantages  gained  by 

having  a  large  scale  VEE  is  the  ability  to  look  at  images  between  the  user  and  projection  screen 

plane  from  multiple  views  by  having  the  user  walk  around  and  look  over  and  under  the  object. 

By  restricting  the  users  to  a  seat  they  can  no  longer  take  advantage  of  moving  around  objects  that 

lie  between  the  screen  arid  themselves.  However,  for  demonstration  purposes  the  rumble  seat  can 

be  removed  to  allow  more  observers  into  the  NAVE. 

To  keep  overall  costs  down,  a  decision  was  made  to  employ  a  passive  stereo  image 

generation  system.  This  is  done  by  a  projector  that  generates  every  other  horizontal  line  of  the 

image  in  one  polarization  and  the  other  set  of  horizontal  lines  are  generated  using  a  polarization 

that  is  90  degrees  out  of  phase  from  the  first.  This  allows  users  to  wear  inexpensive  glasses  that 

are  very  similar  to  sunglasses  with  each  lens  polarized  to  see  only  the  desired  half  of  the  lines  of 

resolution.  These  glasses  cost  less  then  two  dollars  per  pair,  vice  the  over  100  dollars  per  pair  for 

the  active  shutter  glasses.  A  disadvantage  of  the  polarized  glasses  is  users  must  maintain  their 
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head  orientation  constant  with  respect  to  the  screens.  This  means  the  line  drawn  from  pupil  to 

pupil  must  remain  parallel  to  the  floor  which  still  allows  users  to  rotate  their  heads  from  side  to 

side  or  up  and  down,  but  not  about  the  axis  that  extends  out  from  the  nose. 

The  NAVE  takes  full  advantage  of  most  of  the  body’s  sensory  input  mechanisms  that  are 

often  ignored  by  the  commercially  available  VEEs.  These  are  sound,  vibration,  auxiliary  lighting 

and  air  movement.  The  sound  system  is  fully  spatialized  surround  with  a  subwoofer  that 

generates  low  frequency  vibrations  throughout  the  entire  room.  The  rumble  seat  houses  two 

shakers  and  the  elevated  platform  that  the  screens  and  seat  are  atop  have  six  shakers  mounted 

underneath  to  simulate  seat  of  the  pants  vibrations  from  moving  over  the  ground.  Small  strobe 

lights  are  set  out  of  direct  view  to  add  flashes  to  the  background  ambience  that  can  be  used  to 

enhance  the  effect  of  lightning  or  bright  flashes  from  weapon  discharges.  Small  fans  and  heating 

elements  are  used  to  change  the  airflow  and  temperatures  for  the  users.  Using  the  fans  without 

heat  gives  the  sensation  of  motion  and  that  of  moisture  in  the  air  such  as  a  rainsto^  while  the 

heat  can  be  used  to  enhance  a  desert  scene  or  intensify  an  inferno. 

The  NAVE  was  created  on  the  same  paradigm  as  all  the  previous  CAVEs,  namely  of 

fixed  preplanned  rigidity  for  the/  entire  stmcture.  The  angles  between  the  projection  screens  are 

designed  to  not  be  changed  after  constraction  has  been  finished.  This  can  limit  the  overall 

usefulness  of  the  VEE  and  restricts  physiological  evaluation  measurements  on  how  VEE  screen 

angles  affect  the  users  sense  of  reality  from  the  virtual  scene  presented  before  them. 

5.  The  RAVE^ 

Introduced  late  in  1999,  the  RAVE  has  introduced  a  flexibility  that  was  missing  in  large 

scale  VEEs.  Created  by  Fakespace/Pyramid  Systems,  RAVE  is  an  acronym  for  Reconfigurable 

Automatic  Vutual  Environment  [FakespaceOO].  This  has  been  accomplished  by  producing  the 18 



screen,  frame,  projectors  and  mirrors  into  modules  that  occupy  a  10  by  12  foot  area  each.  They 

are  rear  projection  and  come  in  two  varieties,  a  center  module  and  a  side  module.  Side  modules 

contain  one  projector  and  mirror,  while  the  center  module  has  two  projectors  and  mirrors  plus  a 

detached  ten  by  ten  foot  floor  projection  surface.  The  second  mirror  extends  out  above  the  rear 

projection  screen  so  that  the  image  appears  on  the  floor.  Both  of  the  modules  are  12  feet  deep 

and  have  air  cushioned  coasters  for  easy  movement  once  they  are  fully  assembled  in  the  space 

where  they  will  be  used. 

The  possibilities  for  configuration  are  almost  limitless.  The  initial  system  consists  of  two 

side  and  one  center  module  so  any  shape  can  be  formed  from  a  straight  30  foot  Power  Wall  to  a 

standard  10  foot  cube.  With  a  fourth  module  added,  a  five-sided  CAVE  can  quickly  and  easily  be 

configured.  One  drawback  is  that  when  the  walls  are  not  in  a  90-degree  orientation  with  each 

other,  some  portions  of  the  floor  inside  the  chord  line  from  free  end  to  free  end  do  not  have  a 

projection  on  it.  To  resolve  this  problem  would  require  all  modules  to  be  of  the  center  type  and 

software  would  have  to  control  the  shape  of  the  image  projected  onto  the  floor  for  every  possible 

angle  configuration.  Although  this  is  possible,  the  additional  cost  makes  it  prohibitive.  If  a  larger 

full  floor  CAVE  is  needed  simply  purchase  an  additional  center  section  for  a  10  by  20  foot  four 

walled  CAVE  or  two  complete  RAVEs  for  a  10  by  20  foot  five  walled  CAVE.  [FakespaceOO] 

B.  SCENE  GRAPHS 

In  order  to  maximize  the  usefulness  and  believability  of  virtual  environments,  the  refresh 

rate  the  image  is  displayed  at  needs  to  approach  the  fusion  frequency.  Many  factors  enter  into  the 

refresh  rate  that  are  elements  of  virtual  environment  design  and  will  be  discussed  later  in  this 

paper.  The  biggest  and  most  important  factor  is  the  actual  rendering  and  display  of  the  image 

itself.  Much  of  this  factor  involves  culling,  or  clipping,  the  database  to  objects  in  the  viewing 19 



frustum,  which  is  the  area  of  the  scene  displayed  on  the  monitor.  The  best  organization  of  the 

graphical  database  for  the  culling  process  and  hence  rendering  speed  has  become  the  scene  graph. 

1.  Early  Efforts 

Early  computer  graphics  algorithms  used  polygons,  parametric  surface  patches,  or 

procedures  to  model  surfaces.  These  methods  all  were  trying  to  improve  minor  areas  of  the 

rendering  process  to  give  an  overall  greater  improvement  to  scene  generation.  They  also 

increased  the  level  of  complexity  of  the  surfaces,  adding  more  curved  surface  algorithms  to 

achieve  a  hi^er  level  of  realism. 

The  polygonal  method  of  scene  generation  built  surfaces  using  polygons  and  then  culled 

them  with  either  a  depth-first  or  depth-last  sorting.  The  depth-first  algorithm  sorts  the  databases 

by  how  close  polygons  are  to  the  viewpoint.  The  renderer  then  writes  the  polygons  to  a  buffer, 

giving  those  closer  to  the  viewpoint  higher  visible  priority.  As  the  image  is  drawn  on  the  screen, 

those  polygons  with  higher  priority  are  rendered  first.  If  the  raster  comes  to  a  pixel  that  has 

already  been  output,  it  skips  it  and  goes  to  the  next.  The  depth-last  algorithm  sorts  the  polygons 

first  by  their  vertical  edges  and  then  by  their  horizontal  distances.  By  saving  the  depth  sort  for 

last,  this  process  attempts  to  minimize  the  database  to  be  sorted. 

Parametric  surface  generation  algorithms  offer  improvement  for  shading  and  for  drawing 

curved  edges.  They  use  surface  patches,  such  as  Bezier  patches  or  Non  Uniform  Rational  B- 

Splines  (NURBS),  to  draw  smooth  models.  The  tradeoff  is  that  the  algorithms  are  no  longer 

linear  and  therefore  much  more  mathematically  complex.  The  best  way  to  minimize  the 

mathematical  slowdown  is  to  recursively  divide  the  surface  patches  until  they  are  pixel  sized  and 

then  draw  them.  If  an  object  closer  to  the  viewpoint  already  uses  the  pixel,  the  patch  is  not 

rendered. 
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The  procedural  method  uses  geometric  primitives,  such  as  triangles,  to  build  larger 

objects.  This  allows  rendering  similar  to  polygonal  methods,  but  the  geometric  primitives  need 

be  compared  only  when  they  overlap  one  another. 

2.  Clark’s  Hierarchal  Geometric  Models 

Clark  introduced  a  revolutionary  new  algorithm  that  used  a  very  structured  graph  format 

to  store  the  graphical  database.  Previous  structures  attempted  to  store  objects  by  defining  where 

they  were  positioned  or  how  they  clipped  objects  to  the  viewing  frustum.  Clark  combined  these 

techniques  and  extended  them  to  provide  methods  and  structures  to  revolutionize  graphics 

programming. 

The  first  improvement  Clark  offered  was  a  useful  way  to  vary  the  amount  of  detail  in  a 

scene.  This  is  done  by  the  use  of  multiple  Levels  Of  Detail  (LOD).  When  an  object  is  close  to 

the  viewer,  it  is  displayed  as  a  high-resolution  model.  When  it  reaches  a  set  distance  from  the 

viewer,  the  renderer  switches  to  a  less  complex  lower-resolution  model.  This  allows  more  detail 

on  foreground  objects  while  keeping  the  overall  complexity  stable.  Clark’s  scene  graph  allowed 

for  these  multiple  LODs  by  providing  switching  methods  based  on  distance  from  the  viewpoint. 

[Clark76,  pp  550-551] 

Another  improvement  offered  by  Clark  was  a  better  clipping  algorithm.  This  algorithm 

did  a  logarithmic  recursive  search  of  the  scene  graph  to  clip  objects  to  the  viewing  frustum.  It 

identifred  what  nodes  were  relevant  by  comparing  them  to  a  simple  volume  to  determine  if  they 

were  viewable,  the  node  was  not  in  the  volume,  anything  below  that  node  in  the  graph  was 

skipped  in  the  test. 

The  next  improvement  was  defining  a  “graphical  working  set”  that  identified  what  parts 

of  the  scene  should  exist  in  memory.  Most  complex  environments  are  too  large  to  store  the  entire 
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database  in  memory.  The  graphical  working  set  defined  what  was  in  the  current  frame  and  what 

could  be  in  the  next  frame.  By  keeping  only  this  portion  of  the  database  in  memory,  a  type  of 

memory  management  occurred  which  is  similar  to  paging  and  improves  the  frame  rate. 

Figure  2.5.  Sample  graphical  working  set.  Anything  not  in  the  contour  is  ignored  for  rendering. 

The  final  improvement  that  Clark  offered  was  a  recursive  descent,  visible  surface 

algorithm.  This  algorithm  organized  the  database  by  bounding  volumes.  If  the  bounding 

volumes  of  objects  overlap  then  one  or  more  is  visually  occluded  signaling  it  and  its  descendants 

need  not  be  considered  for  rendering.  The  recursive  part  occurs  since  this  is  done  for  every  node 

in  the  graph  and  its  descendants.  This  is  also  done  for  the  frustum  culling,  minimiTing  the 

amount  of  geometry  that  must  be  clipped.  The  sorting  thus  completed  provides  an  extremely 

streamlined  and  easily  navigable  structure  for  visual  environments:  the  scene  graph. 



3.  Current  Scene  Graphs 

One  of  the  first  commercially  successful  scene  graphs  was  Silicon  Graphics,  Inc.’s 

(currently  called  sgi™)  Performer™.  It  was  developed  to  help  users  of  sgi  computers  to  realize 

the  full  potential  of  their  machines.  Performer  was  built  on  a  multi-threaded  model 

(app/cull/draw  threads)  that  could  take  advantage  of  multi-processor  sgi’s  and  further  enhance  the 

capabilities  of  graphics  applications. 

Performer  consists  of  two  libraries,  libpf  and  libpr,  that  contain  the  C  progranoming 

language  classes  to  perform  display  algorithms  similar  to  those  proposed  by  Clark.  The  1  ibpr 

library  contains  the  high  speed  rendering  algorithms,  while  the  libpf  library  contains  methods 

that  provide  enhanced  support  for  visual  simulations. 

The  libpr  library  is  a  low-level  library  that  provides  many  methods  and  objects  to 

generate  high  performance  graphics.  The  high  performance  geometry  rendering  is  accomplished 

using  pf  Geo  Set  objects  that  bypass  CPU  bottlenecks  in  their  rendering.  Display  lists,  as 

instantiated  in  pfdispList  objects,  provide  for  better  organization  of  geometric  primitives. 

Finally,  the  libpr  library  also  contains  all  the  math,  intersection  and  memory  management 

methods  needed. 

Conversely,  the  libpf  library  is  a  higher  level  library  that  makes  calls  to  the  libpr 

library  so  that  the  user  does  not  need  to  directly  access  it.  The  1  ibpf  library  mainly  provides 

multiprocessor  support,  rendering  pipelines,  and  scene  structures  to  store  the  visual  database.  The 

rendering  pipelines  also  allow  multichannel  rendering  to  facilitate  multiscreen  displays  such  as 

CAVEs.  The  scene  structure  contains  all  the  nodes,  LODs,  and  traversal  functions  needed  for 

compelling  visual  simulations.  [Rohlf/Helman94] 

A  commercially  available  visual  simulation  development  toolkit  called  Vega  has  been 

built  upon  Performer.  Vega  abstracts  Performer  one  more  level  by  making  all  of  the  scene  graph 
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calls  for  the  developer.  It  has  a  Graphical  User  Interface  (GUI)  that  allows  the  user  to  quickly 

build  an  environment  in  much  less  time  than  programming  in  Performer  requires.  Conversely, 

Vega  allows  the  advanced  user  to  build  specialized  implementations  that  Vega  will  then  execute 

with  a  scene  file.  Vega  will  be  discussed  in  more  detail  in  Chapter  4. 

Although  Performer  is  extremely  powerful  and  arguably  the  best  scene  graph  available,  it 

is  available  only  for  Mx™  platforms.  However,  much  of  the  computing  world  has  shifted  away 

from  traditional  Unix  platforms  to  less  expensive  alternatives.  This  shift  requires  that  a  virtual 

environment  be  cross-platform  to  expose  it  to  the  widest  set  of  potential  users.  Java  is  developing 

as  the  language  of  choice  for  cross-platform  software  developers  with  its  “compile  once  and  run 

everywhere”  philosophy.  Sun  Microsystems  has  concurrently  developed  JavaSD,  a  cross¬ 

platform  scene  graph  companion  to  J ava,  for  rendering  three  dimensional  graphics  using  Java. 

JAVA 
Frame 

JAVASD 

CanvasSD 
extends  Canvas  (AWT) 

1 -
 

JAVA3D 

SimpleUniverse 

Viewer 

holds  "virtual  presence" 

Locale 

sets  up  scene  graph 
ViewingPlatform 

sets  up  view  side  of  scene  graph 

Figure  2.6.  JavaSD  scene  graph  organization. 

JavaSD  uses  the  same  object-orientated  approach  as  Java.  A  Java  object  called 

Sin^leUiiiverrss  holds  the  information  for  the  scene.  The  SimplsUniveirse  has  a 

Viewer,  ViewingPlatf  orm,  and  Locale  associated  with  it.  The  Viewer  controls  what 

the  user  looks  like  both  to  himself  and  others.  The  ViewingPlat  f  orm  determines  what  the 

user  sees.  The  Locale  holds  the  geometry  information  for  the  graphical  database.  JavaSD  has 

advanced  culling  and  scene  graph  traversal  algorithms  built  in  to  ensure  the  rendering  process 

takes  as  little  time  as  possible.  Ease  of  construction  plus  built  in  algorithms  makp.  JavaSD  a 24 



viable  alternative  for  cross-platform  applications.  JavaSD  will  be  discussed  more  in  depth  in 

Chapter  5. 

C.  VISUAL  SIMULATIONS 

Visual  simulations  are  the  underlying  graphics  protocols  for  virtual  environments.  Fairly 

new,  they  are  just  now  becoming  more  popular  as  computer  technology  advances.  What  once 

required  a  high-end  Silicon  Graphics  machine  can  now  be  run  on  a  desktop  PC.  This  section  will 

examine  the  history  of  two  of  the  major  visual  simulations.  These  simulations  were  both 

networked,  allowing  hundreds  of  users  to  interact,  and  provided  the  inspiration  and  example  for 

many  developers  to  follow. 

1.  SIMNET 

SIMNET  (SIMulator  NETworking)  was  developed  by  the  Department  of  Defense  to 

provide  inexpensive  networked  military  simulators  for  training  small  units.  Heterogeneous  forces 

would  be  able  to  train  together  to  practice  combined  arms  techniques.  It  was  designed  to  provide 

the  majority  of  a  soldier’s  training  but  still  required  the  soldier  to  complete  some  field  training 

[Singhal/Zyda99,  p.  20].  Although  it  was  not  intended  to  replace  all  of  a  soldier’s  field  training, 

SIMNET  allowed  soldiers  to  simulate  large,  expensive,  and  hazardous  scenarios. 

SIMNET  used  an  architecture  where  each  entity  was  an  object  that  caused  events  to 

occur.  Each  object  was  responsible  for  determining  its  own  position,  initiating  events  to  affect 

other  players,  and  updating  its  state  to  reflect  events  affecting  it.  Each  object  sent  out  network 

packets  that  either  reported  its  state  vector,  announced  an  event,  or  acted  as  a  heartbeat  to  confirm 
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its  presence  in  SIMNET.  By  having  each  entity  be  an  object,  SIMNET  enabled  the  entities  to  be 

autonomous,  thereby  eliminating  the  need  for  a  client/server  architecture  and  its  vulnerability  to 

single-point  failures.  Each  entity  also  implemented  dead  reckoning  routines  to  control  the  display 

of  other  players  between  packets.  Dead  reckoning  allowed  the  overall  number  of  packets  sent  out 

by  an  entity  to  be  smaller  and  reduced  entity  jumping  due  to  packet  latency.  SIMNET  also 

allowed  fully  destructible  terrain,  however  any  terrain  feature  that  could  be  destroyed  had  to  be  an 

object  with  its  attendant  network  packets.  [Singhal/Zyda99,  p.  21-25] 

The  network  architecture  used  by  SIMNET  was  very  attractive  to  visual  simulation 

developers.  Unfortunately,  the  architecture  was  not  well  documented.  After  SIMNET  had  been 

running  a  few  years,  an  attempt  was  made  to  formalize  the  SIMNET  networking  architecture. 

This  resulted  in  the  first  DIS  standard.  DIS  provided  a  protocol  that  allowed  anyone  on  any 

platform  to  network  with  other  people  as  long  as  the  developer  implemented  the  DIS  standard. 

This  allowed  academic  and  commercial  ventures  to  participate  in  SIMNET  and  other  visual 

simulation  research. 

The  inheritance  of  DIS  from  SIMNET  is  evidenced  by  the  same  autonomous  object  and 

event  based  protocols.  DIS  uses  a  Protocol  Data  unit  (PDU)  that  has  data  fields  allowing  both 

object  and  event  information.  An  IEEE  DIS  standard  officially  [IEEE98]  defines  27  PDUs, 

however  most  implementations  utilize  only  four:  entity  state,  weapons  fire,  collision,  and 

detonation.  This  is  due  to  two  factors,  one  being  that  some  PDUs  were  introduced  to  the  standard 

to  provide  special  features  for  their  developers,  and  that  implementing  more  than  those  four 

would  very  easily  lead  to  network  congestion.  Like  SIMNET,  each  entity  is  responsible  for 

issuing  the  PDUs  for  the  events  it  instigates.  Each  entity  is  also  responsible  for  updating  its  state 

based  on  PDUs  it  receives.  Once  again,  DIS  is  autonomous  and  thus  does  not  need  a  client/server 

architecture.  Because  of  its  wide  acceptance,  cross-platform  capabilities,  and  serverless 
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architecture,  DIS  was  chosen  as  the  networking  interface  for  the  two  simulations  built  for  this 

thesis. 

2.  NPSNET 

While  DIS  was  in  its  infancy,  the  Naval  Postgraduate  School  was  asked  by  the 

Department  of  Defense  if  simulations  could  be  built  that  would  connect  to  and  interact  with 

SIMNET.  The  Naval  Postgraduate  School  (NPS)  had  been  developing  visual  simulation  software 

to  run  on  low-end  sgi  workstations.  By  the  time  DOD  asked  them  to  help  with  SIMNET,  NPS 

had  built  a  missile  simulator  (FOG-M),  a  vehicle  simulator  (VEH),  and  the  Moving  Platform 

Simulator  (MPS),  which  was  a  networked  virtual  environment  that  could  support  over  five 

players.  [Singhal/Zyda99,  p.  38] 

The  original  NPSNET  came  from  taking  the  MPS  simulation  and  improving  it  to  read 

SIMNET  terrain  files.  Although  it  was  a  follow  on  effort,  NPS-Stealth,  that  was  finally  able  to 

interact  with  SIMNET,  the  original  NPSNET  received  widespread  attention  from  both 

government  and  academic  institutions.  The  first  NPSNET  system  had  no  dead  reckoning;  instead 

each  entity  sent  a  state  packet  every  frame.  NPSNET-II  and  HI  built  on  the  original  NPSNET  and 

had  better  graphics  and  could  read  larger  terrain  databases.  NPSNET-IV  was  developed  to  use 

Performer  after  it  was  released  by  sgi.  NPSNET-IV  also  used  DIS  as  its  network  protocol  and 

implemented  dead  reckoning.  In  its  debut  at  SIGGRAPH  93  it  was  able  to  network  up  to  60 

players. 

Since  its  initial  development,  NPSNET-IV  has  become  the  template  for  a  successful 

networked  virtual  environment.  It  can  interact  with  any  other  simulation  that  uses  DIS  and  has 

been  improved  by  various  thesis  students  to  add  human  articulation,  special  effects  animation, 

and  has  been  the  test  bed  for  many  other  efforts  to  improve  immersion  in  virtual  environments. 
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NPSNET-IV  was  able  to  access  the  Multicast  Backbone  (Mbone)  of  the  Internet  to  interact  with 

widely  dispersed  sites.  Future  development  of  NPSNET-IV  has  been  stopped  in  favor  of 

NPSNET-V,  which  is  currently  under  development.  [Singhal/Zyda99,  p.  40-42] 

Conclusion 

This  background  work  has  provided  the  tools  to  make  a  large-sized  VEE,  connected  by 

computer  networking  to  other  remote  computers,  both  economical  and  relatively  quick  to 

construct.  Of  course  these  low  cost  solutions  will  not  have  all  of  the  capabilities  of  the  large 

commercial  systems,  but  multitudes  of  useful  research  can  be  accomplished  in  them. 
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m.  PHYSICAL  CONSTRUCTION  OF  MAAVE 

This  section  will  cover  the  planning  and  physical  construction  phases  of  the  MAAVE. 

The  major  constraints  were  the  rooms  available  on  campus,  allocated  budget  and  physical 

location  of  computer  hardware.  Two  doctoral  candidates  started  the  initial  planning  for  the 

MAAVE  by  ordering  the  rear  projection  screens  and  Liquid  Crystal  Display  (LCD)  projectors, 

but  the  constraction  of  a  large-sized  VEE  fit  well  with  the  software  project  that  was  the  basis  of 

this  thesis. 

A.  PLANNING  THE  LAYOUT  OF  THE  MAAVE 

The  size  of  the  image,  given  distance  to  the  screen,  delivered  by  the  projectors  coupled 

with  the  floor  space  of  the  room  available  to  house  the  MAAVE  determined  the  maximum  size  of 

the  screens  that  could  be  used  for  the  first  MAAVE.  The  physical  dimensions  and  obstmctions  of 

the  room  are  displayed  in  Fig.  3.1.  The  usable  entrances  to  the  room,  Spanagel  Hall  room  240, 

are  from  the  main  hallway  or  the  room  242  since  the  door  to  room  238  is  blocked  from  the  other 

side.  To  maximize  the  floor  space  for  the  enclosure,  the  entrance  was  decided  to  be  from  room 

242,  keeping  the  door  to  the  main  hallway  as  an  emergency  exit. 

The  projectors  are  the  VRex  2210  and  have  an  advertised  maximum  width  of  projection 

of  seven  feet  one  inch  and  height  of  five  feet  six  inches  with  a  screen  twelve  feet  eight  inches 

fi-om  the  projector.  A  plaiming  tool  was  created  from  graph  paper  that  represented  the  projection 

cone  of  the  2210  to  allow  for  an  estimate  of  the  minimum  sizes  of  the  two  mirrors  and  the 

maximum  size  of  the  projection  screens.  Since  the  tool  was  made  fi-om  graph  paper  it  could  be 

folded  twice  to  represent  the  bounces  off  of  the  mirrors.  The  height  and  width  of  the  mirrors 

29 



were  derived  from  the  above  dimensions  using  the  1024  by  768  pixel  aspect  ratio  that  the 

projector  displays.  The  screen  size  was  selected  as  seven  feet  wide  by  six  feet  tall,  while  the 

secondary  bounce  mirror  size  of  five  feet  wide  by  four  feet  tall  and  primary  bounce  mirror  of  18 

inches  wide  and  15  inches  tall  were  selected  to  allow  for  adjusting  the  placements  of  the  mirror. 

Figure  3.1.  Hoor  layout  of  Spanagel  Room  240 

Once  the  room  had  been  selected  and  the  size  and  shape  of  the  MAAVE  were  decided 

upon,  setting  the  characteristic  properties  of  the  room  and  creating  stands  to  hold  the  screens  and 

mirrors  needed  to  be  done.  Factors  that  weighed  in  these  decisions  were:  desired  acoustical 

properties  of  the  room,  controlling  all  sources  of  light  entering  the  room,  not  obstructing  the  light 

path  from  the  projector  to  the  screen,  setting  the  number  of  observers  and  their  height  of  eye, 
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composition  of  the  floor  and  whether  or  not  to  build  a  raised  platform,  and  how  to  get  computer 

graphics  to  the  projectors. 

Since  the  only  other  known  VRex  based  VEE,  the  NAVE  (see  section  n.A.4),  used  a 

raised  platform,  and  the  design  of  the  screen  holders  depended  on  this  decision,  this  was  the  first 

to  be  made.  Since  a  large  volume  of  visitors  would  be  passing  through  the  MAAVE,  keeping 

everyone  on  the  floor  seemed  to  be  the  most  cost  effective  and  lifecycle  pradent.  The  floor  had 

hard  tiles,  which  would  reflect  both  light  and  sound,  so  dark  industrial  grade  carpeting  was 

installed.  To  keep  costs  down  the  floor  was  not  made  into  a  single  level  plane.  A  level  floor 

would  have  made  fine  tuning  the  images  and  joining  the  screens  easier,  but  since  the  MAAVE 

was  created  in  components  each  individual  piece  had  to  be  made  level  relative  to  the  center 

screen. 

Two  of  the  walls  in  the  room  were  smooth  finished  concrete;  one  was  almost  entirely 

windowed  and  the  last  was  completed  only  two-thirds  of  the  way  to  the  ceiling.  Although  the 

large  windows  had  Venetian  blinds,  these  still  allowed  far  too  much  light  to  enter  the  room  and 

had  to  be  darkened.  Curtains  were  installed  which  helped  dampen  echoes,  but  the  light  that 

leaked  over  and  under  them  was  still  too  disruptive.  The  solution  was  to  take  the  packaging  the 

screens  were  shipped  in  and  attach  them  to  the  window  frames.  The  short  wall  was  completed  to 

the  ceiling  by  the  school  facilities  department,  which  resulted  in  a  light  controlled  room  with  a 

terrible  echoing  problem  and  highly  reflective  white  walls.  Acoustic  ceiling  tiles  were  attached  to 

the  three  non-windowed  walls.  A  watered  down  black  paint  was  used  to  darken  these  tiles 

without  filling  the  holes  that  provide  sound  dampening. 
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B.  GRAPHICS  GENERATION  HARDWARE 

Connecting  computer  graphics  to  the  projectors  was  a  major  concern  since  the  type  of 

computer  or  computers  to  power  the  MAAVE  were  not  decided  upon  until  less  than  two  months 

from  the  scheduled  completion  date.  The  choices  were  between  using  the  five-year-old  Infinite 

Reality™  sgi  computer  in  the  graphics  research  laboratory,  a  single  Intergraph  dual  Pentium™  n 

personal  computer  (PC)  or  buying  three  Athlon™/Pentium  El  PCs  and  networking  them  for 

synchronization  of  display. 

The  bifinite  Reality  solution  had  the  following  benefits: 

Best  graphics  rendering  speed  for  complex  visual  models  in  the  computer  science 

department. 

-  Multiple  display  output  option  already  installed. 

Native  platform  for  Vega  software. 

Unfortunately,  the  age  of  the  computer  was  only  one  of  the  following  detriments  for  its 

utilization: 

All  signals  needed  to  be  amplified  and  sent  150  feet  down  the  hallway  to  room  2,40  at 

a  total  cost  of  around  $2,700.00. 

Only  one  RM6  graphics  board  was  installed  and  it  did  not  have  sufficient  memory  to 

store  all  of  the  textures  for  the  Herrmann  Hall  model. 

A  second  RM6  graphics  board  would  cost  around  $6,000.00. 

-  A  remote  terminal  would  need  to  be  set  up  in  room  242  to  access  the  Infinite  Reality 

computer. 
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In  the  current  configuration  the  Herrmann  Hall  walkthrough  program  ran  as  slow  as 

ten  frames  per  second  and  the  second  graphics  card  would  not  result  in  a  significant 

increase  of  the  speed  for  drawing. 

Although  this  computer  was  designated  to  drive  the  graphics  for  the  MAAVE  at  the  beginning  of 

the  project,  the  hardest  decision  was  not  to  upgrade  and  use  this  computer. 

The  Intergraph  PC  solution  was  to  work  in  conjunction  with  the  Infinite  Reality  solution. 

The  decision  not  to  upgrade  Infinite  Reality  computer  left  this  PC  as  the  only  graphics  source  for 

the  MAAVE  that  could  be  implemented  before  the  conclusion  of  this  thesis.  Benefits  of  this  PC 

are: 

Three  Wildcat  graphics  cards  are  the  standard  output. 

Dual  Pentium  n  400MHz  processors,  which  benefit  Vega. 

Uses  WindowsNT™,  which  benefits  JavaSD. 

Contains  5 12  Megabytes  of  RAM. 

-  Very  portable  so  configuration  with  the  projectors  is  easy. 

Detriments  for  this  Intergraph  PC  include: 

Age  is  over  two  years  old. 

-  Graphics  are  delivered  over  a  PCI  bus  vice  AGP  bus  (the  controller  for  the  graphics 

uses  the  AGP  bus  and  each  of  the  Wildcats  only  utilize  PCI  slots). 

-  Uses  the  VegaNT™  software,  which  is  not  as  fast  as  Vega  on  an  sgi  platform. 

The  decision  to  not  upgrade  and  use  the  Infinite  Reality  computer  was  based  on  the  cost 

of  nearly  $10,000.00  that  would  not  boost  its  performance  compared  to  that  which  could  be 

obtained  from  three  new  PCs  networked  together.  Since  this  decision  came  late  in  the 

construction  phase  and  the  computers  would  not  arrive  before  this  thesis  was  concluded,  further 

details  of  this  option  can  be  found  in  Chapter  Vn. 
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High  traffic  volume  and  minimizing  costs  dictated  the  MAAVE  would  be  used  by 

standing  in  front  of  the  screens  or  having  a  row  of  chairs  in  the  front  with  a  second  row  of 

observers  standing  behind  them.  A  consensus  guess  on  the  average  height  of  eye  for  these  uses 

was  just  below  five  feet.  This  height  was  designated  for  the  middle  of  the  screens.  This  also 

meant  the  center  pivot  of  the  large  second  bounce  mirrors  would  be  located  below  this  height  due 

to  the  upward  angled  output  from  the  VRex  projectors.  The  actual  construction  of  the  screen  and 

mirror  frames  is  covered  in  the  next  section. 

C.  CONSTRUCTION  OF  SCREEN  AND  MIRROR  FRAMES 

With  2x4  wood  selected  as  the  construction  material,  standard  housing  construction 

designs  were  used  for  the  wall  like  screen  stand.  The  difficulty  was  in  how  to  support  the  top  of 

the  screen  from  behind  without  blocking  any  of  the  reflected  light  that  would  occupy  the  entire 

width  of  the  screen.  With  the  screen  material  six  feet  high  by  seven  feet  wide  the  base  support 

under  the  screen  was  chosen  to  be  21  inches.  Screen  thickness  is  V4  inch,  so  a  Va  inch  wide  by  Vi 

inch  deep  groove  was  routered  into  the  top  of  the  2  x  4,  located  Vi  inch  from  the  front  edge  of  the 

support.  Figure  3.2  shows  that  the  screen  sits  in  this  groove  in  a  seven  foot  long  2x4  while  the 

bottom  2  X  4  is  not  as  long.  This  was  done  to  allow  the  horizontal  supports  to  extend  backward 

from  the  front  of  the  screen  without  adding  to  the  width  of  the  screen  frame. 

To  save  weight  and  help  prevent  bowing  the  screen,  a  2  x  2  was  used  to  hold  the  top  of 

the  screen.  Again  this  board  was  seven  feet  long  and  had  a  groove  routered  into  it  of  the  same 

dimensions  as  the  board  that  holds  the  bottom  of  the  screen.  To  add  counter  weight  for  balance  a 

seven  foot  wide  by  eight  foot  tall  frame  was  made  to  hold  the  top  2  x  2  board  in  place.  This 

frame  is  attached  the  screen  support  by  the  horizontal  support  from  the  front  screen  and  a 

diagonal  support  to  maintain  the  frame  in  a  vertical  position.  From  the  top  horizontal  bar  three  2 
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X  2s  extend  forward  to  support  the  2  x  2  that  holds  the  top  of  the  screen.  This  configuration 

leaves  the  entire  back  open,  except  the  2  x  4s  that  go  around  the  perimeter  of  the  screen.  These 

boards  do  not  interfere  with  the  projected  image  since  the  image  is  not  full  size  when  it  passes 

through  the  plane  of  the  back  frame.  Since  wood  will  always  expand  and  contract  with  changes 

in  temperature  and  humidity,  plywood  triangles  were  nailed  onto  all  joints  where  maintaining  the 

angle  of  the  joint  was  critical. 

Figure  3.2.  Front  and  side  views  of  screen  frames. 

The  finishing  touches  to  the  screen  frames  were  to  cut  a  45  degree  comer  from  the  back 

of  the  screen  grooves  to  the  front  edge  of  the  frames.  This  same  cut  was  done  on  the  top  screen 

holder  and  also  the  boards  at  the  bottom  of  the  frame.  This  exposes  the  edges  of  the  screens  to 

allow  them  to  meet  flush  against  each  other  and  also  allows  for  the  screens  to  be  set  at  multiple 

angles  from  135  degrees  and  smaller.  Flat  metal  brackets  were  used  to  hold  the  top  and  bottom 
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boards  with  grooves  beside  each  other  so  the  screens  would  touch.  The  center  screen  also  had 

two  pieces  of  veneer  attached  to  the  outer  sides  of  the  frame  to  prevent  the  images  from  the  side 

projectors  from  bleeding  over  onto  the  center  screen  and  vice  versa.  The  edges  on  the  screens 

were  very  roughly  cut  by  the  manufacturer  and  did  not  form  neat  joints.  All  four  joining  screen 

edges  had  to  be  ground  down  by  hand  tools  to  minimize  the  gaps  along  the  seams.  This  process 

was  very  meticulous  and  difficult  since  large  tools  such  as  planers  or  router  tables  could  not  be 

used.  The  gaps  could  only  be  reduced  to  approximately  one  millimeter.  Clear  silicon  caulking 

was  used  to  fill  the  joint  where  the  screens  met  and  helps  to  minimize  the  seam  by  allowing  light 

from  both  projectors  to  commingle  in  the  seam. 

The  primary  bounce  mirror  is  attached  to  the  center  of  the  back  of  the  screen  frame  and  is 

allowed  to  pivot  towards  the  projector  so  the  image  can  be  bounced  upwards  to  the  secondary 

bounce  mirror.  The  primary  bounce  mirror  is  held  in  a  three  sided  frame  consisting  of  1-1/2  inch 

wide  by  1/8  inch  thick  angled  aluminum.  A  hinge  is  attached  between  each  of  the  free  ends  and 

the  screen  frame,  and  these  allow  pivoting  of  the  primary  bounce  mirror.  Slotted  track  guides 

(commonly  used  to  hold  open  the  lids  on  cedar  or  similar  type  chests)  are  attached  to  the  bottom 

of  both  the  mirror  frame  and  the  screen  frame  to  allow  setting  and  holding  of  particular  angles 

using  the  tensioning  screws. 

The  large  secondary  mirrors  are  heavy  (approximately  70  lbs.)  and  need  to  be  suspended 

above  the  ground.  They  also  must  be  able  to  tilt  to  allow  tuning  of  the  images.  The  five  foot 

wide  by  four  foot  high  mirrors  are  set  on  top  of  a  2  x  4  frame.  The  mirror  is  loosely  attached  to 

the  front  of  this  frame  by  the  same  aluminum  angle  metal  used  for  the  smaller  mirrors. 

Cardboard  is  used  as  the  gasket  material  and  to  keep  the  mirror  from  being  warped  by  the  wooden 

frame.  When  the  mirror  is  in  position  it  actually  hangs  on  top  of  the  metal  since  it  is  trying  to  fall 

down  and  away  from  the  frame.  It  is  hoped  that  over  time  this  will  keep  the  optics  truer  than 

other  VEEs  that  have  used  wood  to  hold  mirrors.  ¥1  inch  diameter  bolts  were  placed  through  the 
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center  of  the  sides  of  the  wooden  mirror  frames  to  support  pivoting.  This  makes  the  side  with  the 

mirror  always  seek  to  go  down  to  a  near  horizontal  position  and  provides  a  means  for  setting  the 

mirror  angle. 

2  x4 frame  under 

Figure  3.3.  Secondary  mirror  frame  and  stand. 

The  frame  that  suspends  the  mirror  is  made  from  2  x  4s  and  is  similar  to  the  back  support 

for  the  main  screen.  As  can  be  seen  in  Fig.  3.3,  the  horizontal  support  has  to  be  extended  forward 

(instead  of  being  centered)  since  the  walls  limit  the  placement  of  the  mirror  stands.  At  first  the 

pivot  bolt  was  placed  at  the  height  of  the  center  of  the  screens.  The  calculation  of  this  initial 

height  neglected  to  compensate  for  the  image  from  the  projector  being  skewed  in  the  upward 

direction.  Consequently  pivots  of  the  mirrors  were  lowered  to  approximately  four  inches  below 

the  center  height  of  the  projection  screens.  Two  wires,  one  on  either  side,  maintain  the  second 
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bounce  mirror’s  angle  by  extending  from  the  mirror’s  wooden  backing  to  the  suspension  frame 

and  taking  advantage  of  the  tipping  motion  mentioned  earlier. 

D.  TUNING  THE  IMAGES  ON  THE  SCREENS 

The  last  phase  of  construction  was  matching  the  image  to  the  screen.  The  composition  of 

the  screen  frames  allows  for  the  image  on  the  screens  to  be  slightly  wider  than  the  screen.  This  is 

crucial  to  using  software  to  help  align  the  multiple  screens.  Also,  the  projectors  themselves  have 

the  ability  to  slew  the  projected  image  up,  down,  left  or  right.  Prior  to  attempting  image 

alignment,  all  of  the  projectors  were  set  to  have  the  images  centered  to  enable  use  of  the  slewing 

as  needed. 

In  order  to  keep  a  squared  image  on  the  screen,  the  light  must  travel  the  exact  same 

distances  from  the  projector  to  all  places  on  the  screen  (as  demonstrated  in  Fig.  3.4.)  This  was 

easiest  to  achieve  by  keeping  the  projector  perpendicular  to  the  screen  and  parallel  to  the  floor. 

The  upward  angle  from  the  projector  caused  the  primary  bounce  mirror  to  be  raised  from  its 

initial  position  just  as  it  caused  the  large  mirror  to  be  lowered.  In  the  initial  configuration,  the 

image  on  the  screen  did  not  have  parallel  vertical  lines  until  the  bottom  of  the  image  was  two  feet 

up  from  the  bottom  of  the  screen.  Reanalysis  of  the  angles  for  the  mirrors  led  to  the  appropriate 

corrections  in  height  for  each  mirror.  The  small  mirrors  were  raised  first,  but  could  not  be  placed 

high  enough  without  blocking  the  image  on  the  screen.  This  meant  the  second  bounce  mirrors 

had  to  be  lowered.  Attaching  the  primary  bounce  mirror  to  the  screen  frame  ensured  the 

horizontal  plane  of  this  mirror  would  stay  parallel  to  the  horizontal  plane  of  the  screen.  To 

position  the  second  bounce  mirrors  so  that  its  horizontal  plane  would  be  parallel  to  the  screen, 

simply  keeping  both  sides  of  the  mirror  equidistant  from  the  screen  would  suffice. 
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The  projectors  were  placed  so  the  size  of  the  images  produced  was  two  inches  wider  than  the 

screens  width.  This  allows  for  adjusting  the  image  in  software  for  each  screen  to  try  and  obtain 

an  exact  pixel  match  from  one  screen  to  the  next.  Also  the  edges  of  the  images  tend  to  have 

minor  waviness  from  either  imperfections  in  the  screens  and  mirrors,  or  torques  applied  to  the 

screens  and  mirrors.  Two  of  the  three  screens  stand  almost  perfectly  vertical,  while  one  of  the 

screens  bows  backwards.  To  compensate  for  this  bowing  the  top  of  the  top  support  board  is 

rotated  towards  the  back  helping  to  counter  the  bowing  in  the  top  of  the  screen.  A  1/8  inch 

diameter  rod  had  to  be  used  to  push  out  the  bow  in  the  lower  half  of  the  screen.  This  rod  was 

notched  in  the  top  so  only  half  of  it  touches  the  back  of  the  screen,  making  it  invisible  from  the 

front  side  of  the  screen. 

Figure  3.4.  Bounce  pattern  from  projector  to  screen. 



The  image  on  the  right  hand  screen  was  set  first  due  to  its  physical  location  constraints. 

Next  followed  the  center  screen  and  lastly  the  left  screen  image  so  each  would  align  with  the 

previous.  Once  the  images  were  squared  with  respect  to  the  screen,  the  actual  heights  of  the 

images  were  adjusted  by  using  the  slew  of  the  projectors.  Having  the  image  appear  as  continuous 

was  done  by  slightly  overlapping  the  fields  of  view  in  software  so  that  the  duplicated  pixels  were 

projected  onto  the  veneer  between  the  screens. 

After  setting  the  computer  in  room  242  and  running  video  cables  to  the  VRex  and  then 

back  to  the  monitors,  a  ghosting  problem  was  discovered.  The  sensitivity  of  the  LCD  projectors 

further  manifested  itself  when  new  video  cables  were  installed  so  the  left  and  center  projectors 

only  had  two  segments  of  cable  going  into  the  projectors.  The  image  on  the  monitors  was  clear, 

but  the  projectors  still  had  difficulty  display  a  proper  image,  especially  in  stereo  mode.  The 

solution  was  moving  the  computer  into  the  room  so  all  projectors  only  needed  a  single  cable. 

The  finishing  touches  were  to  sew  six  black  sheets  together  to  use  as  a  canopy  for  the 

MAAVE.  This  canopy  extends  from  the  top  support  boards  to  the  walls  opposite  each  screen  and 

are  attached  by  snaps  to  allow  for  easy  removal  to  access  the  speakers  and  other  equipment  that 

might  be  installed  above  the  screens.  The  center  of  the  canopy  is  supported  from  the  suspended 

overhead  fluorescent  lights  that  are  in  the  room.  Black  bunting  material  is  used  to  cover  the 

bottom  frames  under  the  screens  and  the  side  access  to  the  far  left  of  the  left  screen.  This  thicker 

material  still  allows  sound  from  the  speakers  inside  the  screen  frames  to  pass  through,  but  helps 

block  residual  light  from  the  projector  bulbs. 
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Figure  3.6.  Side  view  of  Herrmann  Hall  model. 

The  model  used  in  this  simulation  is  a  model  of  the  NFS  administration  building, 

Herrmann  Hall  (Fig.  3.5  and  3.6.)  John  Locke  built  the  model  for  the  NPSNET-IV  networked 
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virtual  environment  using  Multigen™  Creator™.  The  model  is  approximately  10,000  polygons 

with  92  different  textures.  This  model  was  chosen  primarily  because  of  its  detail  and  ready 

availability.  The  other  main  reason  this  model  was  chosen  was  because  the  file  format  could 

easily  be  loaded  into  both  Vega  and  JavaSD. 

This  model  did  not  utilize  any  optimization  techniques  during  its  constraction  and 

therefore  poses  a  significant  challenge  to  graphics  hardware  and  software.  All  textures  are 

separate  image  files,  and  all  of  the  polygons  are  separate  shapes  that  are  not  part  of  meshes. 

Textures  vary  in  size  from  512  by  512  pixels  down  to  16  by  16  pixels,  with  most  under  64  by  64 

pixels.  By  having  separate  textures,  the  software  must  load  each  texture  into  the  texture  hardware 

each  time  it  is  referenced,  causing  a  multitude  of  graphics  state  changes  every  time  a  fi'ame  is 

drawn.  Not  having  continuous  shapes,  like  walls,  as  polygon  meshes  causes  a  large  increase  in 

the  number  of  vertex  coordinates  that  must  be  sent  through  the  graphics  pipeline.  Additionally, 

no  spatial  separations  were  delineated  in  the  model  that  could  facilitate  culling  algorithms. 
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rv.  VEGA  IMPLEMENTATION 

Vega  and  VegaNT,  by  Paradigm  Simulation  Inc.,  were  chosen  for  the  commercial 

software  since  their  underlying  scene  graph  implementation  is  Performer  or  Performer-like. 

Performer  has  been  recognized  as  one  of  the  quickest  and  most  efficient  scene  graphs  in  wide 

scale  use.  The  introduction  at  the  beginning  of  the  Vega  LynX™  User’s  Guide  is  so  succinct  it 

will  be  repeated  verbatim  here.  “Vega  is  a  software  environment  for  virtual  reality  and  real-time 

simulation  applications.  By  combining  advanced  simulation  functionality  with  easy-to-use  tools, 

Vega  provides  a  means  of  constructing  sophisticated  applications  quickly  and  easily.  Vega 

supports  rapid  prototyping  of  complex  visual  simulations.  LynX  is  the  graphical  user  interface  for . 

defining  and  previewing  Vega  applications.  These  Vega  applications  are  programs  that  you 

create  using  the  Vega  development  environment  or  using  a  basic  Vega  executable  provided  with 

all  Vega  packages.”  [Paradigm:  LynX98,  p.  1 1] 

A.  RUNNING  VEGA  USING  THE  LYNX  INTERFACE 

As  stated  in  the  chapter  introduction,  LynX  is  the  GUI  used  for  the  rapid  creation  of 

complex  visual  simulations  that  run  in  real-time:  The  GUI,  Fig.  4.1,  shows  up  as  a  standard 

Window  with  icons  attached  on  one  of  the  sides,  the  panel  view  which  shows  the  fields  for  each 

of  the  icons,  and  the  toolbar  and  menus  across  the  top.  The  end  result  of  using  LynX  is  the 

creation  of  an  Application  Definition  File  (ADF)  that  holds  all  of  the  unique  settings  chosen  for  a 

particular  simulation  that  can  be  run  with  compatible  Vega  executable  files.  An  ADF  is  not 

needed  if  a  programmer  puts  the  multimde  of  settings  required  for  a  simulation  in  the  executable 

file,  but  then  modification  can  be  tricky  and  time  consuming. 
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Figure  4.1.  LynX  Graphical  User  Interface  screen  capture. 
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1.  Using  LynX 

Starting  LynX  is  very  easy  once  Vega  is  installed.  LynX  will  launch  with  the  default 

ADF  open  that  can  be  immediately  run  with  the  default  Vega  executable.  Either  with  a  quick 

tutorial  from  an  experienced  user  or  with  the  help  of  the  LynX  User’s  guide,  this  start-up  process 

is  very  short.  Then  learning  the  intricacies  of  the  relationships  between  data  fields  begins.  One 

exceptional  advantage  of  using  the  Active  Preview  is  the  ability  to  change  some  of  the  ADF 

values  in  the  LynX  GUI  while  the  simulation  is  running  and  witness  the  results  inunediately. 

The  LynX  interface  is  presented  identically  in  both  the  Mx  and  WindowsNT  versions, 

which  makes  the  platform  used  for  creation  of  a  simulation  irrelevant.  Excellent  electronic 

documentation  is  provided  with  software.  All  of  the  LynX  panels  are  accessible  even  if  the 

licenses  to  run  some  of  the  options  have  not  been  purchased.  This  can  help  in  determining  what 

additional  licenses  are  needed  to  create  the  desired  simulation. 

A  very  important  thing  about  Vega  is  that  it  cannot  be  purchased  for  use,  rather  it  is 

licensed  to  be  used  during  a  given  time  interval.  Every  executable  function  class  checks  for  its 

specific  license  or  it  will  not  operate.  The  proper  license  information  must  be  made  available  to 

the  executable  code  during  run-time  and  other  applications  must  not  have  checked  out  more 

licenses  than  the  license  server  has  registered.  Licenses  are  purchased  both  by  specific  type  and 

by  the  number  of  users  that  will  be  running  Vega  programs  simultaneously. 

The  modules  that  Vega  and  L5mX  are  subdivided  in  to  are  as  follows:  Vega  -  the  main 

elements  that  come  with  the  basic  license,  AudioWorks2,  Large  Area  Data  Base  Management, 

Special  Effects,  Vega  Marine  -  maritime  specific  options,  DIS  -  for  networked  simulations. 

Symbology,  Vega  Audio,  and  Vega  Class  Recorder.  The  rest  of  the  LynX  section  will  be  spent 

on  the  important  relationships  that  are  easily  accessed  through  this  GUI. 
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2.  LynX  menu  items  and  critical  simulation  relationships 

This  will  not  be  an  attempt  to  fully  explain  how  to  use  LynX,  but  will  highlight  those 

areas  that  are  necessary  to  fully  understand  the  level  of  complexity  that  is  removed  from  the  user 

by  this  powerful  software  package. 

a.  Windows  Panel 

For  Vega  the  Window  is  the  defined  rendering  pipeline.  It  is  one  of  the  required 

elements  since  it  is  near  the  root  of  the  Vega  scene  graph.  The  window  defines  the  total 

maximum  display  area  for  the  given  rendering  pipeline.  For  exan^le,  the  MAAVE  has  three 

screens  each  with  a  display  of  1024  x  768  pixels.  The  window  that  is  used  when  running  on  a 

single  graphics  card  machine  is  3072  x  768  pixels  while  three  windows  are  run  on  the  system 

with  three  graphics  cards,  each  with  the  resolution  of  1024  x  768. 

This  panel  also  allows  the  quick  setting  of  stereo  images,  placing  a  border  around  the 

window,  enabling  anti-aliasing,  and  defining  how  the  mouse  interacts  vfith  the  window.  For 

advanced  graphics  applications,  the  depths  of  the  buffers  are  also  set  through  this  menu. 

b.  Channels  Panel 

A  channel  is  the  actual  view  into  a  virtual  environment  by  defining  the  plane  onto  which 

the  computer  must  place  the  current  image.  A  channel  occupies  some  portion  of  a  window  and 

multiple  channels  can  exist  for  a  particular  window.  Since  two  unique  hardware  options  were 

used  to  produce  computer  graphics  in  the  MAAVE,  the  flexibility  of  Vega  was  demonstrated  by 46 



the  easy  changes  to  the  channels  and  windows  panels  to  produce  the  most  optimized  rendering 

pipeline  for  each  system.  The  conventional  sgi  computer  with  a  multiple  screen  display  option  is 

most  efficient  with  one  large  window  and  three  channels,  but  the  Intergraph  computer  is  more 

efficient  with  three  channels  that  each  have  only  one  window.  The  latter  is  true  only  since  the 

specially  designed  Intergraph  computer  has  three  separate  graphics  pipelines  via  three  dedicated 

graphics  rendering  cards.  Positioning  the  channels  is  quickly  done  by  entering  the  ratio  positions 

of  each  comer  with  respect  to  its  window. 

Setting  the  viewing  volume  for  each  channel  is  probably  the  most  critical  element  for 

multiple  screen  displays.  Most  single  screen  displays  use  a  symmetric  viewing  frustum  that  best 

emulates  how  human  vision  operates.  By  filling  in  either  the  desired  horizontal  or  vertical  field 

of  view  and  setting  the  near  and  far  clipping  planes,  the  generated  s3mMnetric  frustum  is  perfect 

for  the  center  channel  of  the  three-screen  display.  This  keeps  both  the  near  and  far  clipping 

planes  perpendicular  to  the  line  of  sight  of  the  viewer.  Since  the  Herrmann  Hall  model  contains 

several  narrow  passages,  the  near  clipping  plane  had  to  be  set  to  one-tenth  of  a  meter  so  that  walls 

on  the  sides  of  the  users  position  did  not  get  clipped  at  the  far  edges  of  the  side  screens.  Both  the 

left  and  right  displays  could  use  a  syrmnetric  frustum  if  they  were  at  90  degree  angles  with  the 

center  screen  and  the  user  stood  at  the  center  of  the  focus  of  all  three  screens  throughout  the 

simulation.  Since  the  MAAVE  has  135-degree  angles  between  screens,  an  asymmetric  viewing 

frustum  is  needed  for  both  of  the  side  screens. 

The  asymmetric  viewing  frustum  provides  for  the  near  clipping  plane  not  being 

perpendicular  to  the  users  line  of  sight.  Six  values  are  needed  to  define  this  frustum  since  the  one 

side  touching  the  center  screen  will  be  nearer  to  the  user.  This  means  the  image  plane  is  no 

longer  equidistant  from  the  viewer  about  the  center  of  the  viewing  screen.  This  functionality  was 

incorporated  specifically  for  large  multiple  projection  surfaces.  Six  degree  of  freedom  skew 

control  is  available  to  fine  tune  the  image  projected  by  the  asymmetric  frustum.  This  allows 
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individual  adjustment  of  the  adjacent  images  in  X-axis,  Y-axis,  Z-axis,  Heading,  Pitch  and  Roll 

using  the  right  hand  coordinate  system.  The  powerful  combination  of  these  viewing 

transformations  makes  it  possible  for  the  images  that  each  individual  projector  transmits  to 

slightly  overlap.  Having  a  divider  at  the  joint  between  the  screens  prevents  image  spillover  and 

greatly  reduces  the  time  needed  to  get  smooth  images  through  the  screen  transitions. 

c.  Observers  Panel 

An  observer  is  similar  to  a  camera  in  most  other  visual  graphics  applications.  It  defines 

the  geographic  location  that  the  window(s)  and  channel(s)  can  then  display  the  environment  for. 

An  observer  is  a  required  element  for  the  user  to  define  in  a  simulation.  The  panel  allows  for  the 

observer  to  be  attached  to  objects  moving  in  the  scene,  interact  with  collision  isectors,  be  forced 

to  look  at  a  given  point  or  object,  and  control  sounds  that  are  within  the  observers  range. 

Observers  can  be  attached  directly  to  motion  models  or  to  specific  players.  The  main  focus  of 

this  panel  is  to  control  the  flow  of  the  simulation.  If  a  change  is  made  to  any  other  panel,  it  can 

almost  be  guaranteed  that  some  update  is  needed  in  the  observer  settings. 

d.  Motion  Models  Panel 

Believable  motion  through  a  virtual  environment  is  a  crucial  part  of  making  the 

experience  real  for  the  users.  There  are  currently  nine  motion  models  predefined  for  use  in  the 

Vega  software.  With  the  exception  of  the  Spin  motion  model,  which  only  allows  the  observer  to 

circle  and  object,  all  of  the  motions  are  best  suited  to  some  type  of  vehicle  in  an  outdoor 

environment.  The  scenegraph  attachments  for  the  motion  models  allow  switching  between  any  of 
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them  by  simply  having  a  software  key  designated  to  set  a  new  one  to  control  the  object  or 

observer.  Easy  settings  for  all  of  the  magic  numbers  associated  with  the  motion  model,  like 

maximum  speed,  acceleration  rate  and  initial/reset  position,  are  done  quickly  on  this  panel.  The 

type  of  input  device  plus  the  collision  isectors  are  also  defined  here. 

The  most  flexible  and  dynamic  of  the  motion  models  is  the  Flight  Simulator.  It  is  very 

physics  intensive  and  correct.  Performance  settings  for  flaps,  brakes,  landing  gear  and  low  speed 

flying  characters  are  the  major  parameters.  Lift  coefficients  and  incidences  are  available  for 

every  set  of  control  surfaces.  Turning  rates  in  each  of  the  three  rotational  directions,  as  well  as 

the  dampening  functions  for  each  are  also  defined.  This  functionality  is  best  suited  for  a 

militaristic  type  of  real-time  simulation. 

e.  Scenes  and  Objects  Panels 

The  scenes  is  a  simple  panel,  but  it  defines  what  the  observer  and  motion  models  interact 

with.  Any  objects  that  will  appear  in  a  simulation  must  be  added  to  the  scene  through  this  panel. 

Objects  are  set  as  either  scenes  or  objects,  which  is  important  for  the  collision  detection  isectors. 

The  objects  panel  is  where  all  geometries  are  defined  for  the  simulation.  The  filename  name  is 

set  for  models  that  are  created  using  other  software  packages.  The  Open  Flight  file  format  is  the 

only  software  loader  that  comes  with  Vega.  Since  Vega  sits  on  top  of  Performer,  if  the  current 

version  of  Performer  has  loaders  for  additional  file  formats,  then  more  types  of  model  creators 

can  be  used.  If  not,  having  to  convert  the  file  formats  often  results  in  the  loss  of  fidelity  and 

texturing  on  a  model. 

LynX  allows  for  easy  optimization  of  dataset  models  depending  on  their  usage  during  the 

simulation.  Flattening  and  Cleaning  of  the  loaded  model  is  normally  selected  to  allow  Vega  to 
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optimize  the  way  the  model  is  displayed.  If  a  model  is  large  and  will  interact  only  in  small 

portions  at  any  one  time  with  the  user  then  partitioning  the  model  can  increase  the  overall  speed 

in  which  the  model  is  searched  without  the  user  having  to  decide  how  to  best  cut  up  a  given 

model.  Creating  a  display  list  for  models  will  force  all  of  the  geometry  into  hardware,  but  it  does 

not  allow  for  changing  of  any  of  the  characteristics  of  the  model  during  run  time.  An  initial  and 

reset  position  and  orientation  for  the  object  is  also  set  from  this  menu. 

One  last  critical  item  needs  to  be  set  on  this  menu,  the  isector  bit  mask.  There  are  28  bit 

mask  values  to  uniquely  represent  objects  in  the  simulation  so  that  collision  isectors  can  be 

assigned.  This  makes  it  incredibly  easy  to  define  complex  interaction  behaviors  between  multiple 

objects  by  selecting  one  or  more  of  the  following  categories  as  the  type  of  object  that  is  being 

added  to  the  scene  graph;  Terrain,  Static  Object,  Dynamic  Object,  and  Special  Object.  There  are 

eight  groupings  for  each  category,  or  the  object  can  belong  to  all  eight  at  once.  This  quickly 

allows  specialized  behavior  such  as  when  dismounted  infantry  enter  a  forest  their  movement 

ability  would  not  be  hindered,  but  if  an  armored  vehicle  encounters  the  same  terrain  group  its 

movements  will  be  greatly  affected. 

f.  Isectors  Panel 

Isector  stands  for  Intersection  Vector.  It  is  a  single  directional  line  segment  that  tests 

against  all  loaded  geometry  models  that  have  a  bit  mask  value  for  which  the  isector  was 

designated  to  detect.  The  primary  use  of  isectors  is  for  determining  when  two  objects  collide. 

Collisions  between  two  moveable  objects  should  normally  exhibit  some  specialized  behavior, 

while  collision  with  the  ground  is  a  useful  thing  for  vehicles  to  simulate  moving  over  the  terrain. 
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Currently  seven  isectors  are  operational  and  they  include;  Z,  HAT,  2PR,  TRIPOD,  LOS, 

BUMP,  and  XYZPR.  Z  represents  a  single  isector  that  is  oriented  in  the  vertical  direction  for 

detecting  collisions  primarily  with  terrain.  HAT  stands  for  Height  Above  Terrain  and  is  normally 

used  in  flying  simulations  where  a  specialized  Z-isector  is  moved  with  the  object  and  adjusted  to 

maintain  above,  below  or  at  the  designated  relative  altitude.  ZPR  is  another  specialized  Z-isector 

that  also  returns  the  slope  of  the  ground  in  both  the  Pitch  and  Roll  directions.  TRIPOD  consists 

of  three  isectors  and  is  primarily  used  to  represent  a  driving  vehicle.  TRIPOD  needs  settings  for 

the  width  between  the  two  rear  isectors  and  the  length  from  the  perpendicular  bisection  of  the  two 

rear  isectors  giving  it  the  performance  characteristics  of  a  tricycle.  LOS  is  a  single  isector  that 

goes  from  a  designated  point  along  a  Line  Of  Sight  (LOS)  and  can  be  used  to  determine  visibility 

or  collision  with  other  vertical  objects.  BUMP  uses  six  isectors,  one  along  each  of  the  positive 

and  negative  X,  Y  and  Z-axes.  BUMP  requires  three  parameters,  height,  width  and  length,  and  is 

used  primarily  as  an  educational  example.  XYZPR  is  used  when  the  simulation  is  on  a  large 

enough  scale  that  a  rounded  terrain  is  needed  and  performs  like  a  ZPR. 

g.  Environments  and  Environment  Effects  Panels 

These  panels  are  mentioned  since  an  outdoor  scene  can  be  quickly  generated.  It  is  easy 

for  fog  to  be  set,  the  color  of  the  sky  designated,  light  sources  added,  time  of  day,  and  several 

special  effects.  Fog  can  use  the  linear,  exponential,  exponential  squared  or  a  spline  function  to 

determine  the  effect.  Overall  visibility  ranges  for  the  environment  can  also  be  specified.  Lights 

used  include  infinite,  local,  spot  sun  and  moon.  The  sun  and  moon  light  are  moderated  based 

upon  the  time  of  day.  Several  types  of  clouds  are  available  and  quickly  add  believability  to  the 

simulation. 
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3.  Limitations  of  LynX  Implementations  Alone 

Although  LynX  delivers  remarkable  results  in  an  incredibly  short  time,  the  overall 

desired  results  might  not  be  achievable  using  this  interface  alone.  The  main  thrust  of  the  Vega 

LynX  software  package  is  outdoor,  large-scale  simulations.  Although  dismounted  humans  are 

able  to  interact  with  other  objects  in  a  simulation,  there  is  no  specific  walking  motion  model. 

Also,  the  default  behavior  for  isectors  is  to  return  that  part  of  an  object  that  is  the  highest  in 

absolute  elevation,  which  is  desirable  for  outdoors,  but  detrimental  for  maneuvering  inside 

complex,  multi-level  structures.  Another  drawback  is  the  cost  for  each  additional  software 

license  to  expand  the  capabilities  of  the  simulation  beyond  just  the  basic  application.  For 

example,  to  use  the  DIS  networking  module  requires  additional  licenses  for  each  runtime 

application. 

B.  CREATING  SPECIALIZED  VEGA  EXECUTABLE  CODE 

The  afore  mentioned  limitations  of  LynX  prevent  the  creation  of  a  first  person,  walk 

through  simulation.  Fortunately  Vega  comes  with  a  detailed  programmer’s  guide.  The 

prerequisites  for  using  this  guide  are  knowledge  of  scene  graphs,  especially  Performer,  and 

detailed  knowledge  of  C  or  C++  programming  languages.  The  software  documentation  provided 

with  Vega  has  several  code  examples  that  are  incredibly  useful  in  understanding  how  all  of  the 

Vega  data  objects  interact.  The  rest  of  this  section  describes  how  the  specialized  executable  code 
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was  created  from  the  provided  examples  for  a  first  person,  walking  motion  model  capable  of 

realistically  navigating  through  a  complex  multiple  layered  building. 

1.  Creating  the  Walking  Motion  Model 

After  experimenting  with  all  of  the  motion  models  available  through  LynX,  nothing 

could  realistically  replicate  the  motion  of  a  human  walking.  The  code  sample  provided  in  chapter 

9  of  the  Vega  Programmer’s  Guide  [Paradigm:  Vega98,  p.  270]  was  the  starting  point  for  creating 

the  needed  executable  code  to  go  with  the  values  set  through  the  LynX  GUI.  This  creates  a 

simple  motion  model  that  uses  a  three-button  mouse  to  give  motion  along  all  three  of  the 

dimensional  axes. 

A  new  user-defined  motion  model  is  created,  but  only  if  no  motion  model  is  selected  in 

the  ADF  designated  as  the  input  for  the  simulation.  This  does  not  prevent  the  user  fi-om 

switching  to  the  predesignated  motion  models  during  runtime,  as  long  as  the  user  delineates  how 

the  input  devices  are  used  to  manipulate  the  various  motion  models.  As  stated  earlier  an  observer 

is  needed  to  have  a  view  on  the  simulated  environment  and  motion  models  can  only  be  attached 

to  observers  or  players.  Since  this  is  a  first  person  simulation  the  observer  is  attached  directly  to 

the  motion  model.  An  input  device  is  then  attached  to  the  motion  model  that  can  be  switched 

during  run  time  with  keyboard  toggles  or  location  switches.  Lastly  the  motion  model  code  must 

be  called  at  least  once  per  run  time  cycle  to  update  the  location  and  orientation  of  the  observer. 

By  registering  the  motion  model  code  as  a  motion  model  cjillback,  the  Vega  software 

inserts  the  code  into  an  optimized  position  within  the  scene  graph.  After  all  of  the  geometry  has 

been  loaded  and  the  rest  of  the  data  structures  have  been  initialized,  the  program  enters  an  infinite 

loop  that  contains  two  Vega  calls  that  cause  the  graphics  to  update  and  be  sent  to  the  screen.  It  is 
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in  between  each  of  these  function  calls  that  all  of  the  callbacks  are  executed.  Callbacks  are 

similar  to  function  calls  and  care  must  be  taken  to  ensure  they  do  not  impede  the  processing  speed 

of  the  overall  program  by  inserting  them  at  the  wrong  times. 

Since  only  a  mouse  or  flight  control  joystick  is  used  to  control  the  motion  model  in  this 

simulation,  and  both  are  fast  reading,  serial  input  devices,  the  devices  can  be  used  synchronously 

during  simulation.  If  a  device  such  as  the  Ascenscion  Hock  of  Birds  were  used,  a  callback  could 

not  directly  read  the  input  device  data  without  slowing  the  overall  simulation.  The  reading  of  the 

input  device  data  is  accomplished  each  cycle  in  the  motion  model  callback  for  this  simulation  and 

then  the  observers  position  is  determined  so  the  graphical  rendering  process  can  begin. 

The  callback  itself  is  broken  into  five  sections:  data  initialization  and  a  switch  statement 

that  goes  to  one  of  four  events  based  upon  when  the  callback  is  invoked.  During  initialization  the 

motion  model,  the  input  device,  and  the  input  devices’  initial  positioning  (such  as  “joystick 

centered”  or  “speed  slider  at  zero  velocity”)  are  obtained  for  local  usage.  Each  of  the  inputs  from 

the  input  device  needs  to  have  a  local  value  to  store  the  input  data  for  motion  model  algorithm  use 

and  a  Vega  position  vector  to  read  the  input  device  in  Vega  database  units.  An  instance  of  the 

motion  model  data  structure  (a  C  struct)  is  created  from  the  user  defined  struct  model  which  holds 

the  following  information:  X,  Y,  and  Z-axis  coordinates  in  database  units,  heading  in  degrees 

from  North  using  the  right  hand  rule,  pitch  and  roll  in  degrees,  a  current  velocity,  a  Vega  position 

vector,  a  time  stamp  holder  and  five  results  from  isector  tests. 



/*  struct  definition  */ 

typedef  struct  { 

float  X,  y,  z;  /*  x,  y,  z  position  in  database  units  */ 
float  h,  p,  r;  /*  heading  in  degrees  (from  north)  */ 
float  velocity; 

v^osition  *pos; 
double  now; 

int  onMyNose,  onMyLeft,  onMyRight,  inBack,  atRail; 

}  motion_model_data; 

Figure  4.2.  C  Structure  definition  for  motion  model. 

The  first  time  a  motion  model  callback  is  executed  during  a  simulation,  whether  at  the 

start  of  the  simulation  or  switched  to  at  a  later  time  during  a  simulation,  the  Vega  motion  model 

initialization  (VGMOT_INIT_EVENT)  event  is  called.  It  is  at  this  time  that  the  input  device  is 

first  read  and  the  starting  position  of  the  motion  model  is  set  along  with  the  velocity,  simulation 

time  and  isector  test  results.  The  next  event  is’ a  motion  model  reset  (VGMOT_RESET_EVH^ 

event.  This  code  is  only  executed  when  a  reset  event  is  triggered  by  either  the  user  or  the  run 

time  code  and  allows  for  changes  to  all  of  the  struct  data.  As  with  all  good  code  an  exit 

(VGMOT_EXIT_EVENT)  event  is  also  included  to  clean  up  all  newly  assigned  memory  when 

this  motion  model  is  no  longer  needed. 

By  far  the  most  important  and  frequently  used  event  is  the  update 

(VGMOT_UPDATE_E'VENT)  event.  Update  is  called  any  time  the  init,  reset  or  exit  events  are 

not  called.  The  first  order  of  business  is  to  obtain  the  X  and  Y-axis  locations  of  the  mouse  cursor  ■ 

or  the  joystick  handle.  Next,  depending  on  which  device  is  currently  in  use,  the  buttons,  toggles 

or  sliders  are  read.  If  the  stop  velocity  button  or  toggle  is  not  pushed  and  none  of  the  isector 

values  indicating  a  collision  status  with  an  object  are  set,  then  any  updates  to  velocity  are 

calculated.  For  mouse  input,  one-tenth  of  a  meter  per  second  is  added  for  a  left  click  and  is 

subtracted  for  a  right  click.  Clicking  the  middle  mouse  button  sets  velocity  to  zero.  When  using 
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a  joystick  the  slider  is  used  to  directly  set  the  velocity  unless  the  stop  button  is  depressed.  As 

with  mouse  cursor  positioning,  a  dead  spot  of  no  velocity  is  set  at  the  middle  of  the  sliders  range 

of  motion  with  pushing  the  slider  forward  increasing  velocity  and  pulling  the  slider  rearward 

causing  a  negative  velocity.  This  motion  model  is  based  upon  the  laws  of  inertia  in  that  once  a 

velocity  is  set  it  will  remain  until  acted  upon  by  some  external  force  such  as  user  input  or 

collision. 

Heading  is  then  calculated  based  upon  current  heading  minus  the  current  value  of  the 

input  devices  X-axis  multiplied  with  a  scaling  constant  and  the  change  in  time  since  the  last 

update.  The  scaling  constant  is  used  to  set  the  maximum  rate  at  which  the  motion  model  can 

pivot.  When  using  the  mouse,  the  X-axis  values  go  from  negative  one  at  the  far  left  of  the  display 

window  to  positive  one  at  the  far  right.  A  dead  spot  of  five  percent  has  been  set  in  the  middle  of 

the  screen  so  that  a  user  does  not  have  to  find  the  exact  center  pixel  of  the  window  to  have 

heading  remain  constant.  This  dead  spot  is  not  necessary  for  input  from  a  joystick  provided  that 

the  center  position  is  properly  calibrated.  The  X-axis  is  read  directly  from  the  deflection  from  the 

center  position  to  the  left  or  right  and  uses  the  same  values  as  the  mouse. 

Elevation  pitch  angle  is  determined  in  much  the  same  manner  as  heading,  except  the  Y- 

axis  values  for  the  input  devices  are  used.  For  the  mouse,  positioning  the  cursor  above  the  center 

of  the  screen  above  the  five-  percent  center  dead  zone  will  cause  the  pitch  angle  to  increase  and 

below  the  center  dead  zone  will  cause  a  pitch  angle  decrease.  The  joystick  uses  a  flight  system 

style  of  control  such  that  pulling  back  on  the  stick  causes  the  pitch  angle  to  increase  and  pushing 

forward  causes  it  to  decrease.  With  all  of  these  values  a  new  X  and  Y-axis  position  for  the 

motion  model  can  be  determined.  The  X-axis  value  is  calculated  by  subtracting  a  Vega  sine 

value  based  on  the  current  heading  multiplied  with  the  new  velocity  and  change  in  time  since  the 

last  update  event  from  the  current  heading.  The  Y-axis  value  is  calculated  by  adding  a  Vega 

56 



cosine  value  based  on  the  current  pitch  angle  multiplied  with  the  new  velocity  and  change  in  time 

since  the  last  update  event  from  the  current  pitch  angle. 

The  challenge  now  is  to  determine  the  correct  Z-axis  database  value  given  the  new  X  and 

Y-axis  values.  This  is  accomplished  through  attaching  a  Z-isector  to  the  motion  model  and 

having  it  check  against  all  classes  of  terrain  objects  for  a  collision  that  would  be  possible  if  a 

person  were  walking.  An  example  of  this  is  not  allowing  the  motion  model  to  step  up  greater 

than  one  and  a  half  meters  in  a  single  step.  The  isector  extends  three  meters  down  and  two  meters 

up  from  the  position  of  the  users’  feet,  if  the  user  had  an  avatar.  This  line  segment  is  adjusted 

every  cycle  to  remain  centered  at  this  position  on  the  motion  model  based  upon  the  last  Z-axis 

value.  With  this  new  value  all  terrain  objects  are  tested  for  intersection  against  the  segment.  It  is 

possible  for  more  than  one  collision  to  occur  and  care  was  taken  to  return  the  best  value  given  the 

current  Z-axis  value.  One  sensitive  area  for  proper  functioning  of  this  motion  model’s  Z-isector 

in  Herrmann  Hall  was  when  ascending  stairs  were  encountered  because  the  polygon  representing 

the  current  floor  extended  under  the  stairs.  Since  this  was  the  only  location  that  this  anomaly 

occurred,  whenever  a  same  level  and  a  one  stair  height  step  up  value  were  encountered 

simultaneously,  the  one  step  up  value  was  returned  by  the  Z-isector. 

The  final  piece  of  making  a  realistic,  first  person,  walking  motion  model  was  inclusion  of 

collisions  with  walls,  railings  and  other  physical  obstructions.  This  was  accomplished  by  usings 

five  LOS  isectors.  Three  of  the  isectors  are  for  forward  motion  with  one  extending  on  the  current 

heading  and  the  other  two  spaced  20  degrees  horizontally  to  either  side.  Twenty  degree  offsets 

were  determined  by  trial  and  error  in  the  Herrmann  Hall  model  to  allow  access  into  all  of  the 

passage  ways,  including  the  narrowest,  while  not  allowing  the  extreme  right  and  left  sides  of  the 

display  to  see  through  wdls  that  were  clipped  by  the  near  viewing  plane.  The  fourth  isector 

extends  directly  opposite  the  current  heading  to  provide  some  collision  detection  while  moving 

backwards.  The  two  side  isectors  were  not  used  in  the  backward  direction  since  a  person  can  not 
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see  through  the  back  of  their  head  and  clipping  of  polygons  should  not  be  detected.  All  of  these 

isectors  are  positioned  1.05  meters  above  the  feet  of  the  motion  model.  Again,  trial  and  error  set 

this  value.  All  four  of  these  isectors  extend  0.8  meters  from  the  center  of  the  motion  model. 

Several  of  the  stairwells  are  very  steep,  which  causes  a  collision  to  be  detected  against  higher 

stairs  while  ascending,  or  the  underside  of  a  higher  flight  of  stairs  while  descending.  There  are 

many  low  railings  in  the  Herrmann  Hall  model  that  prevent  people  from  falling  to  lower  levels 

such  as  in  stairwells  or  around  the  mezzanine  overlooking  the  main  reception  area.  To  prevent 

the  motion  model  from  walking  through  these,  a  fifth  isector  was  added  that  extends  in  the 

current  heading  0.3  meters  and  is  located  0.6  meters  above  the  feet  of  the  motion  model.  Figure 

4.3  shows  the  orientation  of  the  five  isectors. 

Figure  4.3.  Diagram  of  isector  orientation. 

All  five  of  the  LOS  isectors  are  used  to  set  flags  that  inhibit  motion  in  the  direction  of  the 

detected  collision.  For  example,  if  the  user  is  walking  backwards  and  is  about  to  hit  a  wall,  once 

the  isector  registers  a  collision  with  the  terrain,  velocity  is  set  to  zero.  Another  example  would  be 

if  the  user  is  walking  around  a  pillar  in  the  forward  direction  and  turns  quickly  so  that  the  rear 
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isector  detects  a  collision  with  the  pillar.  Since  velocity  has  a  positive  value  the  flag  is  ignored 

and  soon  the  observer  will  move  away  from  the  collision  condition. 

2.  Networking  the  Scene  Graph 

As  stated  in  chapter  I  of  this  document,  DIS  was  decided  upon  to  convey  user  simulation 

state  information  to  remote  users.  The  Vega/LynX  software  has  an  excellent,  fully  defined  DIS 

section,  but  it  requires  an  additional  per-seat  license  fee.  Since  Vega  is  written  in  the  C++ 

programming  language  and  NFS  has  been  using  the  DIS  standard  for  several  years,  a  decision 

was  maftp.  to  incorporate  the  DIS  libraries  created  by  John  Locke,  an  NFS  employee,  into  the 

Vega  executable  code. 

DIS  FDUs  are  read  asynchronously  and  stored  in  a  circular  buffer.  A  function  call  is 

maHp  every  cycle  through  the  run  time  infinite  loop  that  reads  new  packets  in  the  buffer. 

Currently  only  the  Entity  State  FDUs  (ESPDU)  are  kept  by  the  networking  code.  Networking  is 

achieved  through  a  multicast  address  protocol.  Each  ESFDU  contains  an  entity  identification 

(ID)  number  that  should  be  unique  for  every  participant  in  the  network. 

This  entity  ID  is  then  checked  against  an  array  of  currently  held  entity  IDs  for  a  match.  If 

a  match  is  found  then  the  position  data  is  used  to  update  the  location  of  the  remote  participants 

avatar  in  the  local  simulation.  If  no  match  is  found,  a  new  entry  is  made  in  the  entity  ID  array 

and  the  ESPDU  is  read  to  determine  not  only  position  and  orientation,  but  also  what  type  of 

geometric  model  to  use  as  the  avatar  for  this  new  user.  Vega  allows  all  geometry  models  to  be 

loaded  as  a  vgDataSet  prior  to  usage.  If  the  name  of  the  avatar  file  does  not  exactly  match  the 

vgName  given  to  the  vgDataSet  then  the  avatar  will  not  appear  until  its  geometric  model  can  be 

obtained  and  converted  into  a  vgDataSet  object.  A  default  avatar  will  be  displayed  until  the 
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correct  model  can  be  shown.  LynX  makes  the  avatar  loading  process  easy  by  simply  creating  an 

object  in  the  objects  panel  and  entering  the  file  location  where  the  code  for  the  avatars  geometry 

model  exists.  Since  these  avatars  will  move  throughout  the  simulation  it  is  important  to  designate 

them  as  dynamic  objects  and  to  select  the  clone  or  copy  option  for  the  data,  so  multiple 

instantiations  can  be  made  from  one  vgDataSet  object. 

A  timing  flag  is  used  so  that  the  next  time  the  “update  networked  entities”  function  is 

called,  the  motion  model  position  is  encoded  into  an  ESPDU  multicast  to  all  users  on  that 

address.  The  timing  flag  can  be  set  to  whatever  frequency  is  necessary  for  a  smooth  simulation. 

This  approach  was  taken  to  prevent  too  many  or  too  few  ESPDUs  being  sent  by  any  one 

individual  in  the  simulation.  Along  with  the  current  location  and  orientation  of  each  user,  the 

current  velocity  is  sent  and  used  for  dead  reckoning  each  participant’s  location  in  between 

ESPDU  receipts.  Smoothing  algorithms  can  be  employed  to  keep  avatar  motions  continuous  if 

the  extrapolated  position  is  greatly  different  than  the  newly  received  ESPDU. 

3.  Limitations  Of  The  Vega  Walking  Motion  Model  Code 

The  two  most  prevalent  limitations  have  to  deal  with  computer  hardware.  Vega  was 

originally  created  to  run  using  the  Irix  operating  system  resident  on  sgi  computers  and  Performer. 

Performer  is  the  most  optimized  C++  scene  graph,  but  only  runs  on  sgi  computers.  VegaNT  has 

been  released  to  mn  in  the  WindowsNT  operating  system  and  had  to  bring  a  modified  version  of 

Performer  with  it  to  use  a  the  scene  graph. 

Performer  and  a  few  Vega  graphics  calls  are  optimized  and  created  specifically  for  sgi 

graphics  hardware.  Depending  on  the  generation  of  sgi  computer  used,  specially  detailed  Vega 
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graphics  options  can  be  selected.  This  creates  a  bias  in  favor  of  Vega  when  running  software 

applications  on  an  sgi  computer. 

The  networking  code  is  also  substMtially  different  between  the  two  operating  systems. 

The  DIS  library  can  be  used  in  both  cases,  but  the  process  for  opening,  reading,  and  closing  the 

network  connections  is  very  much  different.  A  disadvantage  for  the  VegaNT  code  is  having  to 

convert  the  order  of  the  bytes  received  from  network  order  to  the  order  used  by  WindowsNT  4.0 

machines  (Big  Endian  to  Little  Endian.) 

C.  GENERATING  PASSIVE  STEREO  IMAGES 

Vega  supports  stereo  imaging,  as  did  all  of  the  computers  used  for  developing  the 

walking  motion  model.  Great  concern  was  raised  over  how  to  send  the  proper  stereo  signals  to 

the  LCD  projectors  for  interlaced  horizontal  line  display.  The  solution  was  purely  hardware 

driven  since  the  Intergraph  computer  supports  generating  interlaced  stereo  images.  To  view 

stereo  images  in  the  MAAVE,  all  that  is  needed  is  the  passive  stereo  glasses  and  setting  both  the 

computer  output  and  the  projector  output  to  interlaced  stereo.  To  view  stereo  at  the  three  monitor 

control  station,  active  glasses  are  needed  even  though  the  monitors  receive  the  interlaced  signals 

repeated  through  the  projectors. 

One  of  the  arguments  against  using  the  Infinite  Reality  computer  is  the  stereo  output 

format.  This  computer  uses  an  over-under  stereo  generation  technique  that  would  require  a 

special  signal  converter  to  present  the  projectors  with  a  signal  in  interlaced  format.  Another 

possible. solution  would  be  to  use  a  software  bit-mask  that  first  blanks  the  even  horizontal  lines 

and  then  recalculates  the  iittage  for  the  other  eye  and  applies  an  odd  bit-mask.  This  software 

solution  requires  twice  the  number  of  graphics  cycles  to  obtain  stereo  vision  and  would  only  be 
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useful  on  a  computer  that  has  a  very  high  refresh  rate.  Future  computers  used  to  power  the 

graphics  in  the  MAAVE  will  use  interlaced  stereo  display.  For  further  details  on  stereo  imaging 

refer  to  [McAllister93]. 
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V.  JAVA3D  IMPLEMENTATION 

The  Java3D  API  was  written  to  extend  the  Write  Once,  Run  Anywhere™  capability  of 

Java  to  the  display  of  3-dimensional  graphics  in  a  Web  browser  [JavaSDOO].  It  has  further  grown 

to  provide  a  viable  programming  alternative  for  the  construction  of  visual  simulations  with  built- 

in  support  for  HMDs,  multiple  views,  users’  physical  environments  and  collision  detection. 

JavaSD  allows  developers  to  build  applications  without  needing  to  know  the  end  user’s  final 

display  environment  [Sowrizal/Deering99].  This  chapter  explains  the  JavaSD  scene  graph  and 

describes  how  to  build  a  networked  visual  simulation  in  Java. 

A.  JAVA3D  OVERVIEW 

The  JavaSD  scene  graph  is  organized  into  a  hierarchy  that  is  simple  yet  allows  complex 

manipulation  of  the  scene.  As  fig.  2.6  shows,  the  CanvasSD  allows  JavaSD  to  interface  with 

Java  through  the  Frame.  The  SirttpleUniverse  attached  to  the  CanvasSD  is  the  real 

delineating  point  for  JavaSD.  The  SimpleUni verse  holds  all  of  the  information  in  the  scene 

graph  and  is  the  starting  point  for  the  rendering  cycle.  The  SimpleUniverse  is  made  up  of 

three  parts:  the  Locale,  the  Viewer,  and  the  ViewingPlat  f  orm.  Each  of  these  parts  will  be 

discussed  in  turn. 

1.  Locale 

The  Locale  is  an  object  that  holds  all  of  the  geometry  information  of  the  scene  graph. 

It  also  contains  the  behaviors  defined  for  the  scene  graph.  Behaviors,  discussed  fully  in  section 

V.B,  allow  actions  to  be  performed  on  scene  graph  objects  based  on  Java  or  JavaSD  events.  The 
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Locale  is  the  reference  for  all  geometry  objects  in  the  scene  graph.  The  coordinate  system  in 

JavaSD  is  referenced  relative  to  the  origin  of  the  Locale.  The  Locale  is  the  starting  point  for 

all  of  the  paths  for  scene  graph  traversal.  A  SceneGraphPath  object  can  be  instantiated  that 

will  return  the  path  from  the  Locale  down  the  scene  graph  to  a  desired  node.  This  is  extremely 

useful  for  picking  operations  and  collision  detection.  The  Locale  does  not  need  to  be  explicitly 

defined  if  a  SiitpleUni verse  is  instantiated,  as  JavaSD  will  then  implement  a  default 

Locale  for  the  scene  graph.  Multiple  Locales  can  be  defined  but  should  be  rendered  in 

separate  Canvas  3  Ds. 

Figure  5.1.  Locale  implementation  in  JavaSD. 

2.  Viewer 

The  Viewer  in  JavaSD  holds  all  of  the  presence  information  about  the  user.  It  contains 

information  about  the  user’s  physical  appearance  to  himself  and  his  virtual  appearance  to  others. 

On  the  physical  side,  the  Viewer  contains  the  CanvasSD  object  that  the  user  is  associated  with.  It 

also  contains  a  PhysicalEnvironment  object  that  describes  the  hardware  performance  of  the 
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machine  the  user  is  using.  A  PhysicalBody  object  completes  the  physical  appearance.  The 

PhysicalBody  object  holds  the  user’s  preferences  and  represents  how  the  user  views  himself  in 

the  application.  A  ViewerAvatar  object  provides  the  virtual  appearance.  The  ViewerAvatar  is 

the  geometry  the  user  wants  everyone  else  to  view  him  as.  The  Viewer  also  contains  a  reference 

to  the  current  View  object.  The  View  is  a  Java3D  object  that  holds  all  of  the  information  about 

the  current  view  in  the  current  canvas,  yet  it  exists  outside  of  the  scene  graph.  Finally,  the 

Viewer  also  contains  all  of  the  sound  information  in  the  scene  graph. 

Figure  5.2.  Viewer  implementation  in  JavaSD. 

3.  ViewingPlatform 

The  ViewingPlatform  sets  up  the  view  in  the  scene  graph.  The  ViewingPlatform  contains 

a  multifunction  TransformGroup  object  that  allows  manipulation  of  the  current  view.  The 

ViewingPlatform  also  has  a  reference  to  the  current  View,  along  with  containers  for  any 

geometry  associated  with  the  ViewingPlatform.  One  of  the  most  in:q)ortant  parts  of  the 

ViewingPlatform  is  the  ViewPlatform. 

The  ViewPlatform  controls  the  scale,  orientation,  and  position  of  the  viewpoint.  It  is  the 

ViewPlatform  that  provides  the  hooks  into  the  View  object  for  the  ViewingPlatform.  The 
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ViewPlatform  allows  the  user  to  set  the  view  attachment  policy  and  the  activation  radius.  The 

view  aWchment  policy  determines  where  the  viewpoint  is  placed  in  relation  to  the  geometry  in 

the  scene.  The  default  policy  has  the  virtual  world  viewpoint  correspond  to  the  physical  world 

viewpoint,  while  another  changes  the  virtual  world  viewpoint  to  be  a  constant  height  above  the 

ground.  This  policy  allows  the  programmer  to  vary  this  height  based  on  the  preferences  in  the 

PhysicalBody  object. 

Figure  5.3.  ViewingPlatf oriti  hierarchy. 

B.  BEHAVIORS 

Behaviors  are  used  in  JavaSD  to  describe  how  a  node  in  the  scene  graph  responds  to  a 

given  manipulation.  These  manipulations  range  from  simple  set  rotations  to  complex  input 

devices  affecting  the  location  and  orientation  of  the  viewpoint.  Two  different  applications  of 

Behaviors  were  used  in  this  simulation  and  will  be  discussed  here:  scene  navigation  and 

collision  detection. 
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1.  Scene  Navigation 

The  scene  navigation  goal  for  this  simulation  was  to  have  a  mouse-driven  walking  style 

navigator  similar  to  that  of  the  Vega  simulation.  JavaSD  includes  three  default  mouse  behavior 

classes  that  allow  the  user  to  rotate,  zoom,  and  pan  around  an  object.  This  is  similar  to  a  VRML 

browser,  where  the  rotation  is  about  a  fixed  axis  and  the  user  cannot  actually  walk  through  the 

scene.  David  Nadeau  from  the  San  Diego  Supercomputer  Center  developed  a  walking  navigator 

class  for  the  SIGGRAPH98  Conference  [Sowizral,  et.  al.98]  to  provide  a  real  scene  navigator. 

This  WalkViewerBehavior  class  sets  the  axis  of  rotation  to  the  viewpoint  and  moves  the  axis 

as  the  viewpoint  moves.  This  provides  a  realistic  walking  effect  in  the  virtual  simulation. 

The  WalkViewerBehavior  object  was  instantiated  with  the  current  Frame  object 

and  the  current  ViewPlat f  orm  transform  passed  in  as  parameters.  The 

WalkViewerBehavior  class  listens  to  the  Frame  object  for  mouse  events.  When  a  mouse 

button  is  pressed  and  the  mouse  is  moved,  the  WalkViewerBehavior  object  changes  the 

passed-in  transform.  Since  this  transform  is  a  reference  to  the  ViewPlatf  orm’s  transform,  the 

viewpoint  is  changed  to  reflect  the  new  orientation  or  position.  In  the  WalkViewerBehavior 

class,  the  left  mouse  button  provides  forward  and  backward  motion  and  rotation.  The  middle 

mouse  button  provides  rotation  without  movement,  while  the  right  mouse  button  provides 

translation  side-to-side  and  up  and  down  without  rotation.  The  end  result  is  that  the  viewpoint 

moves  through  the  scene,  just  as  if  the  user  were  walking  in  the  real  world. 
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BoundingSphere  bounds  =  new 

BoundingSphere(new  Point3d{0 . 0, 0 . 0, 0 . 0) ,  100000.0); 
Trans formGroup  viewXForm  = 

simpleUni verse. getViewingPlatformO  .getViewPlatfonnTransfonn( )  ; 
WalkViewerBehavior  mover  =  new 

WalkViewerBehavior  (viewXForm,  rt^Frame)  ; 
mainScene.addChild (mover)  ; 

mover . setSchedulingBounds (bounds ) ; 
mover . setEnable (  true  ) ; 

Figure  5.4.  Addition  of  a  navigation  behavior  to  the  scene  graph. 

2.  Collision  Detection 

Collision  detection  allows  the  user  to  move  through  the  scene  without  walking  through 

walls  or  other  obstacles.  This  provides  a  touch  of  realism  to  the  simulation  and  makes  for  a  more 

enjoyable  experience.  JavaSD  implements  some  events  that  will  search  the  scene  graph  to 

determine  collisions.  These  events  trigger  the  activation  of  the  collision  behaviors.  The  collision 

behaviors  are  WakeUpOnCollisionEntrY,  WakeUpOnCollisonExit,  and 

WakeUpOnCo  1 1  i  s  i  onMovemen t .  The  collision  behaviors  only  indicate  that  a  collision 

event  condition  has  occurred.  It  is  up  to  the  programmer  to  define  what  happens  as  a  result  of  the 

collision  event.  There  are  two  problems  with  this  implementation.  The  first  is  that  the  behaviors 

indicate  that  a  collision  occurred  last  frame,  but  it  would  be  better  to  know  that  a  collision  will 

occur  next  frame.  This  would  allow  the  software  to  anticipate  and  stop  movement  in  the  direction 

of  collision,  providing  a  more  realistic  experience.  The  second  problem  with  the  behaviors  is  that 

once  a  collision  condition  exists,  no  further  collisions  are  detected  until  that  condition  is  removed. 

This  problem  is  illustrated  in  a  simple  example:  a  building  walkthrough  simulation  that  needs  an 

entity  to  be  in  a  collision  condition  with  the  floor  to  follow  it  but  needs  to  be  out  of  a  collision 

condition  to  detect  collisions  with  the  walls.  If  the  entity  is  in  collision  with  the  floor,  a  collision 

with  a  wall  will  go  unnoticed,  resulting  in  the  user  walking  through  the  wall  and  degrading  the 
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virtual  experience.  If  the  entity  is  out  of  collision  with  the  floor,  it  cannot  walk  through  walls  but 

it  also  cannot  negotiate  staircases. 

Collision  detection  was  implemented  in  this  simulation  using  a  CollsionDetector 

class  based  on  the  demo  TickTockCollison  class  included  with  JavaSD.  It  uses  the 

WakeUpOnCollisionEntry  and  WakeUpOnCollisonExit  events  to  signal  collision 

entry  and  exit.  At  this  point  in  development  nothing  further  occurs,  however  the  triggering  object 

can  be  found  by  getting  the  event’s  triggering  path.  This  returns  a  SceneGraphPath  object 

that  will  indicate  what  object  caused  the  collision.  Based  on  the  object’s  orientation,  an  input  to 

the  WalkViewerBehavior  object  could  stop  its  motion  in  the  direction  of  the  triggering 

object.  Further  improvements  to  the  collision  detection  will  be  discussed  in  Chapter  VII. 

C.  NETWORKING 

A  virtual  simulation  is  fine  until  the  user  realizes  that  it  would  be  nice  to  have  company 

(either  firiendly  or  hostile)  in  the  virtual  world.  Networking  allows  multiple  users  to  interact  with 

each  other  and  the  virtual  world.  Many  different  ways  of  networking  were  considered  but  the 

DIS  standard  won  out  because  of  its  widespread  use  and  programming  ease. 

1.  DIS  Implementation 

The  DIS  standard  was  implemented  in  Java  by  Don  McGregor  at  NFS  as  part  of  the 

Web3D  DIS-Java-VRML  working  group.  Although  he  did  not  implement  the  complete  standard, 

he  implemented  the  most  widely  used  PDUs.  He  also  implemented  the  enumerations  needed  to 

best  utilize  these  PDUs.  This  simulation  implemented  only  the  ESPDU  as  it  is  the  most  common 
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and  necessary  one.  The  ESPDU  contains  the  entity’s  EntitylD,  location,  orientation,  and  velocity 

information. 

The  first  step  in  implementing  DIS  is  the  network  interface.  This  simulation  uses  the 

Multicast  protocol,  as  it  needs  no  central  server  and  is  very  flexible.  The  j  ava. .  n©t  library  is 

the  network  interface  to  the  operating  system  and  contains  all  of  the  networking  algorithms.  The 

program  first  opens  a  Mul  ticastSocket  with  a  port  number  and  then  calls  the 

j  oinGroup  ( )  method,  which  joins  the  socket  to  the  provided  multicast  group  address. 

try  { 

multicastAddress  =  InetAddress .getByNaine (MULTICASTIP) ; 
multicastSock  =  new  MulticastSocket (APP_PORT) ; 
multicastSock.setTimeToLive(l) ; 

multicastSock. j oinGroup (multicastAddress) ; 
} 
catch { lOException  ioe)  { 

System. out. println( "Establish  multicast  UDP  port  error:  " 
+  ioe . getMessage { ) ) ; 

return; 

} 

Figure  5.5.  Instantiation  of  a  Multicast  socket  using  Java’s  built-in  networking. 

The  DIS  implementation  is  straightforward.  A  Behaviors treamBuffer  object 

starts  the  buffer  process  to  send  and  receive  the  PDUs.  To  send  a  PDU,  the  simulation  gets  the 

value  of  the  current  ViewPlatf  orm  transform  that  is  set  by  the  WalkViewerBehavior 

object  and  extracts  its  x,  y,  and  z  location.  This  is  then  entered  into  an  EntityStatePDU 

object,  stamped  with  the  program’s  EntitylD  and  sent  out  using  the  sendPDU  ( )  method  of 

the  Behaviors  treamBuffer  object. 

The  BehaviorStreamBuf  f  er  object  collects  all  of  the  received  PDUs  into  the  buffer 

that  can  then  be  read  out  to  a  Vector  object.  Reading  the  buffer  clears  it  for  new  PDUs.  The 

program  uses  a  Java  Hashtable  object  to  store  known  entities  and  their  geometry.  The 

EntitylD  is  the  key  for  the  hashtable  and  the  entity’s  geometry  is  the  stored  data.  The 
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simulation  checks  each  EntitylD  against  the  hashtable  to  determine  if  the  entity  is  known.  If 

the  entity  is  known,  the  program  updates  the  transform  of  its  geometry  with  the  information 

stored  in  the  PDU.  If  the  entity  is  unknown,  the  program  creates  new  geometry  for  the  entity  and 

adds  it  to  the  hashtable  and  the  scene  graph. 

For  this  simulation  only  the  entity  location  field  of  the  ESPDU  was  used.  Since  the  entity 

velocities  are  not  implemented,  the  program  has  no  dead  reckoning.  Although  this  does  not  delay 

the  rendering  process,  when  updates  are  received  the  entity  jumps  to  the  new  position.  This 

results  in  less  believability  for  the  simulation. 

2.  Multi-threading 

A  single-threaded  simulation  would  check  the  arrival  buffer  every  frame,  but  this  can 

slow  the  graphics  display  by  making  the  rendering  pipeline  wait  for  the  networking  update  to 

complete.  This  slowdown  is  increased  if  there  are  numerous  entities  in  the  environment.  This 

slowdown  can  be  prevented  by  multi-threading  the  application.  By  having  all  of  the  networking 

occur  in  separate  threads,  the  rendering  thread,  which  now  only  has  to  deal  with  geometry,  can 

execute  while  the  networking  threads  are  blocked  waiting  for  input.  Since  the  geometry  pipeline 

is  usually  the  limiting  factor  for  rendering  speed,  this  allows  for  better  frame  rate  and  overall 

performance.  Another  reason  for  multi-threading  is  that  on  a  Windows  platform,  the  JVM  is  able 

to  take  advantage  of  a  multi-processor  machine.  In  this  case,  if  a  network  thread  blocks  another 

thread  can  execute,  allowing  the  overall  process  to  keep  running.  This  simulation  uses  three  user 

separate  threads  for  networking.  The  first  initializes  the  BehaviorStreamBuf  f  er  object  and 

regulates  it.  The  second  is  a  thread  that  collects  incoming  PDUs  and  updates  the  hashtable  in  the 

scene  graph  accordingly.  The  third  thread  sends  an  updated  ESPDU  onto  the  network. 
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D.  LOADING  THE  MODEL 

JavaSD  has  a  loader  interface  that  provides  for  future  expansion  and  implementation. 

Any  class  that  implements  this  loader  interface  can  be  used  to  load  a  file  of  a  given  format  and 

convert  it  to  a  JavaSD  Scene  object.  This  Scene  object  can  then  be  attached  to  an  existing  scene 

graph  and  integrated  into  a  program.  The  only  loader  built  by  Sun  and  included  with  JavaSD  is  a 

Lightwave  loader.  Other  file  format  loaders  are  under  constraction,  including  VRML  and  XML. 

Shawn  Kendall,  from  the  Full  Sail  Real  World  Education  in  Orlando,  Florida,  built  a  FLT  file 

format  loader  [Full  SailOO].  This  loader  takes  standard  Multigen  FLT  files  and  converts  the 

geometry  into  ShapeSDs,  which  are  then  built  into  a  Scene  object.  This  Scene  object  then  is 

attached  to  the  scene  graph  as  a  BranchGroup.  This  branch  of  the  scene  graph  is  then 

compiled.  Compiling  allows  JavaSD  to  rearrange  the  scene  graph  so  that  it  can  optimize  the 

rendering  cycle.  It  optimizes  by  minimizing  the  number  of  graphics  state  changes  that  occur. 

State  changes  occur  when  colors,  textures,  and  other  appearance  properties  change.  Each  state 

change  causes  a  complete  halt  to  the  rendering  process.  By  minimizing  the  number  of  state 

changes,  JavaSD  attempts  to  speed  up  the  rendering  process,  subsequently  increasing  the  frame 

rate. 

try 

{ 

Scene  []sceneBase  =  new  Scene [4]; 

sceneBase[0]  =  fltLoader.load(  "hernian/herman_ground. fit"  ) ; 

sceneBase[l]  =  fltLoader . load(  "herman/hennan_main. fit"  ); 

sceneBase[2]  =  f ItLoader . load {  "hennan/hennan_rear . fit"  ); 

sceneBase[3]  =  fltLoader. load (  "hennan/hentian_wings . f It"  ); 
BranchGroup  [] scene  =  new  BranchGroup [ 4 ] ; 

for(int  i=0;  i<scene. length;  i++) { 

scene [i]  =  sceneBase[i]  .getSceneGroupO  ; 

BranchGroup  me  =  new  BranchGroup ( ) ; 
me . addChild ( scene [ i ] ) ; 

Figure  5.6.  Loading  the  model  into  the  scene  graph. 
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VI.  RESULTS  AND  CONCLUSIONS 

One  of  the  two  main  objectives  of  this  thesis  is  the  comparison  of  two  different  software 

systems  for  moving  through  a  three  dimensional  virtual  environment.  The  second  is  creation  of  a 

large-sized  VEE  to  use  for  three  dimensional  visualization  and  experimentation.  Both  of  these 

objectives  were  met  and  the  results  are  presented  here. 

A.  DIFFERENCES  IN  SOFTWARE  IMPLEMENTATIONS 

Two  major  differences  in  software  implementation  occurred  due  to  usability 

considerations  and  development  time  constraints.  Therefore,  comparisons  cannot  be  completely 

accurate,  but  the  biggest  factor,  the  geometry,  was  the  same  for  both  applications.  The 

differences  are  implementation  of  the  collision  detection  algorithms  and  networking. 

Collision  detection  in  the  Java3D  application  was  implemented  using  the  built-in 

collision  behavior  nodes.  This  computational  load  resulted  in  such  poor  performance  that 

collision  detection  was  turned  off  for  the  experiments.  Future  modifications,  discussed  in 

Chapter  Seven,  should  implement  collision  detection  in  a  manner  similar  to  that  used  in  the  Vega 

application.  Without  collision  detection,  the  user  must  manually  avoid  walking  through  walls  or 

floors. 

The  Vega  implementation  on  Mx  had  asynchronous  networking  during  the  frame  rate 

testing.  The  VegaNT  implementations  did  not  have  asynchronous  networking  operating  properly, 

so  frame  rate  measurements  will  be  affected.  Since  the  implementation  is  asynchronous,  the 

impact  on  frame  rate  should  be  minor.  Although  networking  was  running  in  the  JavaSD 
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application,  no  packets  were  actually  sent  to  the  application;  therefore  no  additional  geometry 

was  added  to  the  scene  to  represent  entity  positions. 

B.  MEASUREMENT  OF  GRAPHICS  RENDERING  SPEED 

The  speed  that  a  computer  is  able  to  render  the  graphics  picture  on  the  screen  greatly 

determines  the  success  of  any  VEE.  As  such,  the  primary  measure  for  effectiveness  of  the  two 

software  packages  tested  is  frame  rate.  Frame  rate  measures  how  many  times  per  second  the 

computer  is  able  to  redraw  the  image  on  the  screen.  When  possible,  multiple  screen  display 

modes  were  tested  running  each  application.  Single  screen  and  reduced  size  single  screen  were 

also  tested  to  gain  better  understanding  of  the  graphics  load  placed  on  each  computer.  All  frame 

rate  measurements  were  taken  from  the  locations  denoted  on  Fig.  6.1.  Readings  were  taken  in 

multiple  facing  directions  to  determine  the  effect,  if  any,  of  culling  portions  of  the  Herrmann  Hall 

model. 

Location  1  is  beside  the  flagpole;  when  looking  South  (location  IS)  it  does  not  have  any 

geometry  in  view.  Conversely,  the  new  frustum  at  location  1  looking  North  (location  IN) 

encompasses  the  entire  geometry,  and  culling  could  only  affect  the  visually  occluded  portions  of 

the  model.  The  other  locations  were  chosen  because  of  significant  changes  in  frame  rate  on  one 

or  more  of  the  tested  hardware  systems.  A  brief  description  of,  and  the  results  from,  each  system 

are  delineated  in  the  rest  of  this  section.  Some  surprising  results  were  obtained,  and  the  following 

sections  include  hypothesized  explanations.  Unfortunately,  we  were  unable  to  provide 

explanations  in  all  cases. 
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1. Frame  Rates  Obtained  Using  sgi  Infinite  Reality  Computer 

Hardware  configuration  for  the  Onyx  Infinite  Reality  Computer: 

Four  194  MHz  MIPS  R10000(IP25)  processors  running  Irix  version  6.5 

One  RM6  graphics  board  with  64  MB  of  texture/video  memory 

128  MB  system  RAM 

The  first  computer  tested  for  frame  rate  was  the  five-year-old  Infinite  Reality  computer  in 

the  computer  graphics  laboratory.  The  results  are  listed  in  Fig.  6.2.  Several  interesting  trends  can 

be  foimd  in  the  numbers.  The  most  significant  are  the  almost  unchanging  frame  rates  for  JavaSD 

Location 
Direction 

Vega 

1024x768 
Java3D 
1024x768 

Vega 

3x1024x768 
JavaSD 

3x1024x768 

1N 0.8 

13 

0.8 1S 

15 

24 16 

2N 16 0.9 

12 

0.9 
2S 

24 

1.4 
22 

1.5 

3N 

18 
1 12 1 

3E 
23 

1.4 
18 

1.3 

3S 
23 

1.4 18 
1.4 

3W 
22 

1.3 
15 

1.2 
4N 20 1.2 12 1 
4E 25 

1.4 
20 1.3 

4S 
22 

1.3 
18 

1.3 
4W 21 1.3 15 1.2 

5N 
21 1.3 12 

1.3 

5E 22 1.3 

15 

1.3 
5S 20 1.1 13 1.1 
5W 20 1.3 10 1.2 

6N 

22 
1.4 

20 

1.4 
6E 22 

1.3 
20 1.3 

6S 20 1 

15 

1 
6W 22 

1.3 
15 1.3 

Figure  6.2.  Frame  rate  results  on  Infinite  Reality  Computer  (frames  per  second). 
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regardless  of  number  of  pixels  drawn  to  the  screen,  and  the  moderate  steady  speed  for  Vega. 

Speculation  as  to  why  the  JavaSD  frame  rate  was  so  steady,  and  so  slow,  is  difficult  to 

make  without  more  detailed  testing.  When  the  number  of  pixels  to  fill  on  the  screen  increased, 

the  frame  rate  did  not  significantly  decrease.  One  possible  candidate  is  the  implementation  of  the 

JVM  by  sgi  which  will  be  further  explored  in  the  next  section.  The  JavaSD  code  was  not 

compiled  on  this  computer  and  it  executed  without  fail-  demonstrating  the  portability  and  speed 

of  development  of  JavaSD. 

Frame  rate  using  Vega  was  lower  than  initial  expectations,  yet  followed  a  predictable 

pattern.  When  the  number  of  pixels  to  fill  on  the  screen  increased,  the  frame  rate  decreased. 

From  these  numbers  it  is  hard  to  determine  whether  the  graphics  hardware  is  the  limiting  factor, 

or  if  the  additional  geometry  culling  is  the  limiting  factor.  Given  the  age  of  the  hardware,  and  the 

frame  rates  at  location  1  looking  south,  it  appears  the  graphics  hardware  is  running  at  maximum 

capacity  and  below  the  desired  goal  of  30  Hz.  The  most  notable  numbers  are  the  three  screen 

display  numbers  that  never  drop  below  10  Hz,  even  when  looking  at  the  most  complicated  parts 

of  the  model  for  culling. 

2.  Frame  Rates  Obtained  Using  sgi  320  Visual  Personal  Computer 

Hardware  configuration  for  the  sgi  320  Personal  Computer: 

Two  450  MHz  Pentium  IH  processors  running  WindowsNT  4.0 

Cobalt  graphics  board  that  shares  system  RAM 

256  MB  system  RAM  with  48  MB  assigned  as  graphics  memory 

The  second  computer  tested  was  an  sgi  320  Visual  PC.  Expectations  were  for  Vega’s 

frame  times  to  be  faster  than  they  were  on  the  Infinite  Reality  since  the  computer  still  uses  some 

of  the  technology  that  Vega  was  originally  optimized  to  run  on  and  is  much  newer.  Expectations 
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for  JavaSD  were  to  have  an  increase  in  performance  over  the  Infinite  Reality  since  WindowsNT 

was  the  operating  system.  The  results  were  very  surprising  and  are  included  in  Fig.  6.3. 

Location 

Direction 1 Vega  NT 640x480 
Java3D 

640x480 
Vega  NT 
1280x1024 

Java3D 
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1N 17 
0.7 

8 

0.7 IS 87 

43 

8.5 

2N 17 0.9 10 
0.8 

2S 
87 

1.5 
43 1.5 

3N 21 1.1 12 1.1 
3E 

43 1.5 
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1.5 

3S 
43 

1.5 30 1.4 
3W 

29 1.5 
17 

1.5 

4N 
29 1.4 14 
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4E 
43 

1.4 29 1.5 
4S 

43 
1.4 21 
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4W 29 
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5N 29 
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17 1.5 
5E 43 

1.4 
21 1.4 

5S 22 
1.6 

14 1.4 
5W 
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17 

1.4 

6N 43 
1.4 

29 

1.4 
6E 43 1.4 21 1.4 
6S 21 1.1 12 1 
6W 

43 
1.4 17 1.5 

Figure  6.3.  Frame  rate  results  on  sgi  Visual  PC  (frames  per  second). 

The  differences  in  Vega  and  VegaNT  frame  rates  range  from  in  favor  of  the  Infinite 

Reality  computer  to  slightly  in  favor  of  VegaNT  when  using  full  screen  displays.  Test  position  1 

looking  South  shows  that  this  newer  computer  has  faster  overall  system  speed,  but  when  facing 

North  from  position  1  with  full  geometry  in  view,  the  Infinite  Reality  suffered  much  less  of  a 

slowdown  and  almost  doubled  the  frame  rate  of  the  newer  Visual  PC.  The  Infinite  Reality  always 

outperformed  the  Visual  PC  whenever  the  majority  of  the  model  was  in  the  viewing  frustum. 
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Multiple  screen  output  was  not  available  on  the  Visual  PC,  but  based  on  the  full  screen  numbers 

the  older  Infinite  Reality  would  greatly  outperform  the  Visual  PC. 

Possible  explanations  for  the  performance  differences  might  be  the  fundamental 

architectural  differences  between  Vega  and  VegaNT  themselves.  As  mentioned  in  chapter  IV, 

Vega  uses  the  Performer  scene  graph.  Performer  is  only  available  on  sgi  platforms  that  run  the 

Lix  operating  system  and  directly  accesses  the  specialized  sgi  graphics  hardware.  To  make 

Vegal^  function  properly.  Paradigm  Simulations  had  to  develop  a  Performer-like  scene  graph 

capable  of  running  on  WindowsNT.  This  leaves  VegaNT  graphics  rendering  at  a  disadvantage. 

Frame  rate  numbers  for  JavaSD  on  the  Visual  PC  were  not  statistically  different  than 

those  obtained  from  the  Infinite  Reality  computer  when  compared  to  the  differences  experienced 

by  the  Vega  applications.  The  number  of  pixels  being  displayed,  on  either  sgi  computer,  had  no 

effect  on  JavaSD’s  frame  rate,  which  strongly  indicates  that  pixel-fill  rate  was  not  the  limiting 

factor  for  frame  rate. 

One  possible  explanation  for  the  almost  identical  frame  rates  on  both  sgi  computers  when 

running  JavaSD  is  the  JVM  implementation  used  by  sgi  hardware.  This  position  is  further 

supported  in  the  next  section  where  Java3D  and  VegaNT  display  similar  behaviors  given  the 

graphics  load  capability. 

3.  Frame  Rates  Attained  Using  Intergraph  PC 

Hardware  configuration  for  the  Intergraph  Personal  Computer: 

Two  400  MHz  Pentium  n  processors  running  WindowsNT  4.0 

Three  Wildcat  6000  PCI  graphics  cards  16  MB  each  under  AGP  controller 

512  MB  system  RAM 
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The  computer  actually  used  in  the  MAAVE  was  the  last  computer  tested  since  it  was 

being  used  for  a  field  experiment  almost  until  the  completion  of  the  MAAVE.  After  the 

surprising  results  from  the  Visual  PC  ruiming  JavaSD,  actual  performance  numbers  for  this 

computer  were  highly  anticipated  and  are  shown  in  Fig.  6.4. 

Location Vega  NT 
Java3D II Vega  NT Java3D 

■ Vega  NT 
Java3D 

Direction 640x480 640x480 ■ 1024x768 1024x768 ■ 3x1024x768 3x1024x768 

1N 21 3.8 12.2 
3.5 8.5 0.4 

IS 85 70 

85 

65 

28 

60 

2N 21 3.8 
8.5 3.3 

4.7 0.4 
2S 42 

68 42 47 17 

3.8 

3N 21 3.8 10.6 
3.5 4.5 

0.5 
3E 

44 
24 21 

14 

6.3 1.6 
3S 36 24 28 14 

7.8 

2.2 

3W 29 7 17 3.7 5 1.1 

4N 26 4 14.2 3.6 5.3 0.6 
4E 44 11 28 6 7.1 1.8 
4S 29 

23 17 3.8 
7.7 

1.3 

4W 29 13 17 
3.8 

5.3 

1.4 

5N 29 6 

17 

3.6 
4.8 1.1 

5E 44 7 21 4 6.1 1.1 
5S 29 7 14.2 

3.6 5.3 0.6 

5W 29 7 14.2 
3.7 

4.3 0.9 

6N 44 
10 

28 8 10.6 

6E 
44 

8 23 7 
8.5 

1.2 
6S 21 3.8 10.6 

3.3 
5.7 0.5 

6W 34 7 _ 
19 

5.2 6.5 1 

Figure  6.4.  Frame  rate  results  on  Intergraph  PC  (frames  per  second). 

VegaNT  frame  rate  numbers  were  almost  identical  to  those  obtained  from  the  Visual  PC 

given  the  same  number  of  pixels.  The  slight  advantage  for  the  Visual  PC  could  easily  be  related 

to  the  difference  in  processor  speeds.  Again,  frame  rate  responded  appropriately  to  changes  in 

the  rendering  window  size  with  slower  rates  for  larger  windows. 
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This  was  the  first  comparison  of  multiple  screen  VegaNT  to  multiple  screen  Vega.  Based 

on  these  numbers  the  Infinite  Reality  computer  would  be  the  better  choice  for  powering  the 

MAAVE.  As  mentioned  in  chapter  HI,  the  cost  of  replacing  the  Infinite  Reality,  or  even 

upgrading  it,  would  far  exceed  the  cost  of  purchasing  three  PCs  with  the  latest  processors  and 

AGP  graphics  cards.  The  frame  rate  performance  differential  was  not  deemed  significant  enough 

to  justify  the  expense.  Both  the  Visual  PC  and  the  Intergraph  single  screen  numbers  are  close 

enough  to  the  goal  fimne  rate  of  30  Hz  when  running  VegaNT  to  infer  that  three  networked  PCs 

would  be  capable  of  providing  the  minimum  desired  frame  rates. 

For  the  first  time,  JavaSD  performed  as  expected.  Since  frame  rate  finally  was  dependent 

on  number  of  pixels  rendered,  a  true  gauge  for  the  speed  differential  between  JavaSD  and 

VegaNT  could  be  obtained.  The  three  screen  numbers  for  JavaSD  are  somewhat  suspect  since  a 

single  canvas  was  only  stretched  across  the  entire  environment.  The  actual  field  of  view,  and 

therefore  culling  performance,  was  not  changed  as  pixel  format  changed.  VegaNT  actually  had  a 

170-degree  field  of  view  for  the  culling  routine  to  traverse.  This  may  possibly  explain  location  1 

South  in  the  three  screen  view,  in  which  JavaSD  ran  faster  than  VegaNT.  Figures  6.5  and  6.6 

show  the  single  screen  performance  of  Vega  and  JavaSD  on  the  three  platforms. 

When  JavaSD  was  only  displaying  on  a  single  monitor,  it  was  just  fast  enough  to  be 

useable  for  maneuvering  through  the  Herrmann  Hall  model.  With  the  three-screen  display, 

maneuvering  became  impossible  due  to  the  infrequent  updates  and  collision-less  motion. 
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Frames  

per  

Second 
Figure  6.5.  PerfonriMce  graph  of  Vega  facing  North. 

Figure  6.6.  Performance  graph  of  JavaSD  facing  North. 
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C.  EMPLEMENTAHON  COMPARISONS 

The  level  of  programming  difficulty  was  marked  and  deserves  comment.  The  largest 

difference  is  the  portability  issue.  JavaSD  was  reconfirmed  to  be  cross  platform  conpatible;  once 

the  code  was  compiled  on  one  machine  it  functioned  perfectly  on  all  other  machines.  Vega  and 

VegaNT  had  to  be  reconpiled  on  every  platform  tested.  The  architectures  on  the  individual 

machines  were  different  enough  that  modifications  to  the  C++  code  were  needed  to  obtain  fully 

functional  operations.  Major  coding  differences  were  encountered  using  Vega  between  the  Irix 

and  WindowsNT  inplementations,  especially  with  the  multicast  networking  code. 

Programming  effort  was  also  significantly  different.  The  Java3D  inplementations  for 

most  of  the  Vega  behaviors  required  between  one  half  and  one  third  the  programming  time.  This 

ratio  was  even  greater  for  the  implementation  of  networking  code  since  the  specific  socket 

connections  needed  to  be  hard  coded  for  each  variation  in  platform  using  C++,  vice  only  once  in 

the  JavaSD  application. 

Cost  conparisons  are  hard  to  estimate  since  the  only  other  comparable  VEE  is  the 

NAVE.  The  total  cost  for  the  NAVE  was  reported  at  $60,000.00.  Figure  6.5  shows  the  total  cost 

of  the  MAAVE  to  also  be  approximately  $60,000.  The  majority  of  these  costs  are  for  the 

projection  hardware  and  screens,  with  the  computer  coming  in  second  and  all  other  construction 

materials  a  distant  third. 
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Price  list  as  built  with  educational  discount  and  no  sales  tax: 

3  VRex  2210  projectors 

3  Vrex  rear  projection  screens 
Miscellaneous  materials  (wood,  mirrors,  etc.) 

Intereraph  GTl  with  3  Wildcat  4000  eranhics  cards 

$38,600  total 

$3,000  total 

$1,400  total 
$17,000  total 

Total  hardware: 
$60,000 

Vega  licenses*: 

Vega  for  Irix ~$15,000  each 

educational  price ~$7,500  each 

VegaNT ~$8,0(X)  each 
educational  price ~$4,000  each 

DIS  module ~$9,500  each 

educational  price ~$6,200  each 

*Prices  are  approximate  as  of  1999.  Call  Multigen-Paradigm,  Inc.  for  current  price 
list. 

Figure  6.7.  Price  list  for  MAAVE. 

D.  OVERALL  RECOMMENDATIONS 

The  overall  requirement  of  the  virtual  environment  must  be  carefiilly  chosea  to  determine 

which  software  implementation  is  appropriate.  Li  all  tested  configurations,  Vega  greatly 

outperformed  Java3D  using  the  frame  rate  metric.  If  a  complex  conqiutCT  model  is  used  and 

smoothness  of  motion  is  crucial,  Vega  is  by  far  the  better  choice.  If,  on  the  other  hand,  motion  is 

not  a  priority  (or  a  much  smaller  model  is  utilized)  JavaSD  can  be  used.  Since  JavaSD  is  freely 

distributed  open  source,  it  is  certainly  more  cost  effective  than  Vega.  Due  to  the  performance  of 

Vega,  the  overaU  recommendation  is  to  use  Vega  for  interactive  walkthrou^  simulations. 
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Vn.  FUTURE  WORK 

This  thesis  met  its  intended  goals,  however  there  is  room  for  improvement  in  several 

areas  to  provide  a  better  overall  virtual  environment  experience.  All  three  major  areas  of  this 

thesis,  the  MAAVE,  the  Vega  application,  and  the  JavaSD  application,  will  be  examined  in  turn 

to  provide  some  ideas  for  that  area’s  improvement. 

A.  MAAVE  IMPROVEMENTS 

Although  the  MAAVE  provides  a  usable  virtual  experience,  there  are  a  few  areas  that  can 

be  improved.  The  graphics  rendering  capability  is  the  area  where  improvements  would  most 

likely  enhance  user  experience.  A  more  optimized  model  of  Herrmann  hall  would  also  ease  the 

graphics  issue.  Other  additions,  such  as  spatialized  sound  and  user  position  tracking  ability,  will 

also  result  in  improvement. 

1.  Networked  PC  Configuration 

The  MAAVE  was  built  using  a  three  graphics  card  Intergraph  machine  to  run  the  three 

graphic  displays.  Although  the  Intergraph  provides  an  acceptable  ftame  rate  for  some  programs. 

Chapter  Six  showed  that  it  is  still  slow  for  the  Herrmann  Hall  model.  Another  low-cost  solution 

for  the  graphics  is  to  use  three  high-end  PCs  (one  to  run  each  projector)  and  a  fourth  mid-range 

PC  to  provide  frame  synchronization.  This  way,  each  computer  is  only  responsible  for  one 

screen,  which  will  dramatically  increase  the  frame  rate.  This  should  allow  the  Vega  application’s 

frame  rate  to  approach  the  human  fusion  frequency  and  make  the  JavaSD  application  much  more 

immersive. 
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The  difficulty  ofthis  configuration  is  the  view  synchronization  process.  This  involves 

writing  software  to  send  a  timing  signal  to  the  three  PCs  to  tell  them  to  display  the  next  frame. 

Each  graphics  PC  must  maintain  its  own  separate  graphics  and  entity  states.  This  results  in 

increased  network  traffic,  which  may  in  turn  result  in  a  lower  number  of  usable  entities. 

However,  the  gains  from  the  increased  graphics  capability  will  likely  outweigh  the  issues  of 

increased  network  congestion. 

The  four  graphics  PCs  would  cost  approximately  $2,000  each.  This  configuration  would 

lower  the  overall  MAAVE  price  to  approximately  $51,000. 

2.  Spatialized  Sound 

Spatialized  sound  systems  enable  directional  sound  cueing,  either  by  using  multiple 

speakers  or  through  phase  modulation.  The  addition  of  spatialized  sound  to  a  visual  simulation 

provides  a  more  immersive  and  believable  virtual  experience. 

The  MAAVE  currently  has  no  speaker  system  to  provide  specialized  sound.  Two  options 

were  considered  but  were  not  implemented  due  to  time  restraints.  The  first  option  was  to  use  an 

eight-speaker  system  with  four  front  and  four  rear  channels.  These  speakers  were  available  but 

are  large  and  bulky  and  would  require  heavy  ceiling  anchors  to  mount  them.  The  second  option 

TTiif  npKvf 

was  to  buy  a  Bose  Acoustimas  surround  system.  This  system  has  eight  or  ten  cube  speakers 

with  two  subwoofers.  The  appeal  of  this  design  is  the  small  size  of  the  speakers  and  ease  of 

installation.  Because  of  these  benefits,  the  Acoustimas  system  would  likely  be  a  better  choice  for 

adding  specialized  sound  to  the  MAAVE.  Currently,  hesidphones  from  a  PC  are  available  for  a 

single  user  in  the  MAAVE. 
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3.  Magnetic  Position  Tracking 

Another  planned  improvement  for  the  MAAVE  is  the  addition  of  a  position  tracking 

capability.  At  NFS,  a  Polhemus  Long  Ranger™  is  available  that  will  likely  be  moved  into  the 

MAAVE.  The  Long  Ranger  is  a  magnetic  tracker  consisting  of  an  18”  globe  with  three 

orthogonal  coils  comprising  the  transmitter.  Combined  with  a  Polhemus  Fastrak™  system,  the 

magnetic  tracker  has  a  range  up  to  30  feet  with  only  4  ms  latency  at  120  Hz  [PolhemusOO].  As 

this  system  is  already  available,  it  could  easily  be  installed  in  the  MAAVE.  The  system  would 

need  to  map  the  magnetic  eddies  in  the  room  to  account  for  the  speaker  magnets  and  ferrous  iron 

pipes  in  the  room. 

4.  Better-Organized  Model 

An  improvement  to  the  Herrmann  Hall  model,  although  not  MAAVE  specific,  would 

improve  the  performance  of  the  Vega  and  JavaSD  applications.  The  model  could  be  improved  by 

better  organization  and  use  of  surface  meshes.  Another  improvement  would  be  creating  large 

texture  tiles  from  the  96  separate  textures,  thereby  reducing  the  graphics  state  transitions.  This 

would  give  better  rendering  times,  increase  the  frame  rate  and  make  a  more  compelling  visual 

simulation. 

The  Herrmann  Hall  model  is  incomplete,  and  further  construction  of  the  database  would 

greatly  improve  its  realism.  Additions  would  include  moveable  doors,  an  operating  elevator, 

water  fountains,  room  interiors,  and  additional  hallway  details  such  as  fireplaces.  Also,  most 

windows  are  only  one  sided,  so  collision  detection  only  works  against  that  one  side. 
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B.  VEGA  IMPROVEMENTS 

VegaNT  3.3  proved  very  useful,  but  it  still  contains  some  software  glitches  that  are 

intended  to  be  corrected  in  release  3.5.  With  newer  computer  hardware  the  Herrmann  Hall 

walkthrough  program  will  function  smoothly  and  can  be  used  for  navigation  experimentation. 

1.  Spatialized  Sound 

V ega  supports  spatialized  sound  as  part  of  the  standard  core  application.  Implementation 

is  via  area  of  influence  spheres.  When  the  user  is  within  a  sphere,  they  can  hear  the  sound  source. 

Sphere  sizes  are  based  on  sound  levels  and  attenuation.  Sounds  such  as  footsteps  that  indicate  the 

user’s  speed  and  floor  material  would  be  a  great  enhancement.  Of  course,  since  Herrmann  Hall  is 

a  large  masonry  structure,  the  footsteps  would  require  some  type  of  echoing  for  utmost  realism. 

2.  Enhancing  Network  Capabilities 

Current  networking  implements  only  the  ESPDU  and  does  not  allow  for  the  dynamic 

downloading  of  geometry  models.  Increasing  this  capability  would  enhance  the  usability  of  the 

MAAVE.  These  capabilities  were  not  added  due  to  time  constraints,  but  their  implementation  is 

straightforward. 
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3. Additional  Control  Devices 

A  three-button  mouse  and  PC  joystick  with  slider  are  the  only  input  devices  currently 

able  to  control  the  movement  of  the  walking  motion  model.  Once  the  magnetic  position  tracking 

capability  has  been  added  to  the  MAAVE,  additional  code  must  be  created  to  enable  these 

devices.  Inserting  this  code  should  be  quick  and  simple  once  the  device  port  path-name  is  known, 

since  Vega  and  VegaNT  natively  support  most  positional  input  devices  and  tracking  systems. 

4.  Creating  User  Avatar 

Adding  a  humanoid  avatar  for  the  user  would  make  the  simulation  feel  more  physically 

compelling.  This  needs  to  include  arms  that  reach  forward  to  open  doors,  a  body  that  moves 

when  walking,  and  a  sinusoidal  walking  bounce  to  the  view  that  is  tied  into  speed  of  motion. 

Once  an  avatar  has  been  created,  it  can  be  tied  to  the  motion  model.  Then,  by  taking  advantage  of 

Vega’s  ability  to  tether  away  from  motion  models,  the  user  could  have  either  a  first  or  third 

person  view  of  the  scene. 

5.  Implementing  Levels  of  Detail 

Vega  contains  LOD  functionality  that  could  help  reduce  graphics  display  times  for  distant 

complex  models.  This  would  be  most  useful  for  other  avatars  inhabiting  Herrmann  Hall,  but 

could  be  used  for  the  exterior  of  the  building  if  Herrmann  Hall  were  inserted  into  some  larger 

terrain  database. 
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C.  JAVA3D  IMPROVEMENTS 

Given  the  frame  rate  findings,  the  JavaSD  application  is  not  very  usable.  This  is  partly 

due  to  the  overhead  involved  with  running  on  top  of  the  JVM,  but  also  because  of  the  application 

design.  There  are  three  major  areas  that  could  be  improved  in  the  application:  collision  detection, 

multi-channel  support,  and  inqjroved  networking. 

1.  Collision  Detection 

The  current  application  implements  collision  detection  by  using  the  built-in  JavaSD 

WakeupOn  events.  A  better  way  to  do  collision  detection  is  to  use  JavaSD’ s  picking  algorithms. 

They  allow  a  user  to  use  PickRay  objects  that  send  a  line  out  from  the  viewpoint  in  a  desired 

direction.  The  PickRay  object  returns  the  closest  object  along  its  path.  A  straightforward 

distance  comparison  indicates  if  a  collision  occurs.  This  provides  collision  prediction,  giving  a 

better  immersive  experience  than  collision  notification.  The  picking  tools  also  include 

PickSegment  objects,  which  act  similar  to  PickRay  objects  but  do  not  extend  indefinitely. 

PickSegments  emanating  from  the  user’s  position  can  be  used  for  accurate  terrain  following 

without  accidental  motion  between  building  floors. 

2.  Multi-channel  Support 

Multi-channel  support  would  make  the  application  better  suited  for  the  MAAVE.  It  can 

be  implemented  in  the  current  version  of  JavaSD,  but  the  next  version  of  JavaSD  allegedly  has 
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better  built-in  support  for  integrated  multiple  views.  For,  the  three  PC  solution,  multiple  views 

would  allow  each  of  the  three  networked  PCs  to  render  only  its  channel  and  not  need  to  know 

what  the  other  PCs  are  rendering.  As  currently  implemented,  with  one  view,  each  PC  would  have 

to  render  the  entire  scene  but  display  only  one  third  of  it.  With  multi-channel  capability,  the 

geometry  would  be  drawn  on  separate  CanvasSD  objects,  reducing  the  required  rendering  time. 

Multiple  views  will  also  be  necessary  to  implement  stereo  images  in  JavaSD. 

3.  Improved  Networking 

The  application  currently  uses  only  the  position  fields  of  the  ESPDU.  Follow-on  work 

should  implement  all  of  the  state  vector  fields,  including  orientation  and  linear  and  angular 

velocities.  This  would  facilitate  the  implementation  of  dead  reckoning  and  reduce  the  PDU 

transmission  requirements.  The  other  three  major  PDUs,  collision,  detonation,  and  firing,  should 

also  be  implemented. 

Another  way  to  reduce  the  network  traffic  would  be  to  add  Area  of  hiterest  Management 

(AOIM)  algorithms.  AOIM  frees  the  user  firom  knowing  the  entire  entity  database  by  allowing 

them  access  only  to  entities  that  they  are  interested  in,  i.e.  entities  that  are  either  in  the  same 

geographic  area  or  are  of  a  certain  type.  Chapter  Seven  of  [Singhal/Zyda99]  provides  a  thorough 

overview  of  AOIM  techniques  and  their  benefits. 

4.  JavaSD  Performance  Issues 

The  surprising  results  in  Chapter  Six  raise  issues  about  JavaSD’ s  performance  that  bear 

further  examination.  For  instance,  there  was  no  difference  in  frame  rate  from  the  Visual  PC  to 

the  Infinite  Reality  machine.  Additionally,  there  was  no  significant  change  from  small  screen  to 
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Isrge  or  multi-screen  on  either  platform.  Common  sense  would  dictate  that  increased  resolution 

results  in  lower  frame  rates,  however  this  was  not  the  case.  One  possibility  may  be  that  the 

architecture  of  the  Visual  PC  is  not  the  standard  ffiM  architecture  that  the  JVM  was  written  for. 

All  of  these  issues  need  to  be  explored  further. 

Another  issue  with  JavaSD  is  that  every  30  to  40  frames  the  application  freezes  for  a 

varying  length  of  time  (2-5  seconds)  and  then  resumes  at  the  previous  frame  rate.  This  has  been 

consistently  observed  in  most  JavaSD  applications.  The  phenomenon  seems  to  be  the  result  of  an 

interruption  to  the  JavaSD  rendering  thread.  This  could  be  caused  by  a  m)Tiad  of  reasons 

including  garbage  collection,  networking,  or  memory  paging. 
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